0 like 1 dislike
8.6k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 8.6k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
******* ** * *****
* **** *** ** * *

int main() {
** * * *** ********* * * ***
* ** * * * ** * * * * ** * *** %f * ** * * * &a, &b, * *
** * * * ** ** * ***
* ** **** ******** * * ** * * {
* *** * *** * * ** *** * * ** * * * * ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * ** ** = * * * * = * * ** * *** a, b, c, (-b)/(2*a), * ** * *** (-b)/(2*a), * *** * *
*** * * **** ******** *
** * *** ** *** *** * if(d==0) {
* ** ** * *** * ***** * * **** * ***** * ** **** *
* ****** ** ** ***** * **** ***** * ***** ** * * * * * * * ** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ** ** a, b, c, x1);
*** ** *** ******* * * *
* *** * *** *** * * * * * * ** {
* * ** ** * * * * ****** * * ** ** * * * ******
*** *** *** * *** * * * * * * * * * * * ******
** * * ** ** * * ** * *** ** * ** ** *** ***** ** * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * ***** = %.2f\nx2 = **** *** a, b, c, x1, x2);
* * ** * ***** ***
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ******* * *
** * * ** * ** **
#include * * ***** *

int main()
{
* ** * *** *** *** **** ** *** *
* * *** ** * ** ** ** ** %f **** * ***** * *** ******
* **** ****** * * * * *** * * *
* * **** * ** **** * * *** ** * *
* * **** ** * * * * * ** **
* ***** ** ** ** ******** ******
** * * ** * * **** ** * *** of %.2fx^2 + %.2fx + %.2f = 0 are real and ** * ** = %.2f\nx2 = ** * * ** * *
** * ** *** * * * if(D==0)
* ** ** ****** * ** **** * ** ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * *** *** **
* * * *** ** *** ***
* * ** ** ** * ** * ** * ** * * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and ** * = * ** * * = * * * ** ** * * ** * *** ****** ** * * * ** *
*** * ** ** * * **** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include *** * * * *
* * * * * * * ***
** *** **** * * **

int main()
{
* * * ** *** **** *** *** *
* * ** ** * * * * * %f * ** ** * ***** ** **
* * * ** *** * ** **** *
* * *** * * * * * * *** *
** * * ** * * *** ** * * * * ** * *
** ***** *** * ** * *** * ** **
** ** * * * * *** *** *** **** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and ** **** = %.2f\nx2 = *** **** * *** ***
* ** * * ** * * * * **
* ** * ** **** *** *** * ** *** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = *** * ** * *
***** * * ******
* * ** * *** * *** ******* of %.2fx^2 + %.2fx + %.2f = 0 are complex and * **** * = %.2f + * * = %.2f - * * ** ** ***** *** * ****** ** *** *
*** ***** * **** **** * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* *** * *** ** * * **** a,b,c,x1,x2,D;
* * ** * ** ** * ** * * *** %f * * * * ** * ** ** *
* * *** * * ** **** ** ** ** **
* *** * *** ** * * * ** * = (-b + sqrt(D))/(2*a);
* * *** *** ** **** * = (-b - sqrt(D))/(2*a);
****** * *** * * ** * *
* * * ** * * * * * ** * * * ******* ** *
**** * **** ** **** ***** * * * * * * ** ** ** * *** * * * ** * * * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* ******* ******* * * * * **** * *** * * * ** * ** ** **** ** * ** * * ** = %.2f\n",x1);
** * * ***** **** * ** * * **** * ******* *** * ***** * *** * * *** * *** * = %.2f",x2);
*** * * * * ** * ** * * * *
* * ** * * * **** * * if(D==0)
** *** ** ******** * ** ** * ** *** *
* ***** * * ** ** * **** * ** * * * ** ** * **** ** ** * * ** **** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
* * ** *** * *** * *** ** * ***** ** ** *** ********** * * * * *** = x2 = %.2f",x1);
* *** *** * * * *** *** * ** ***** *** *** *
*** * *** ******* ******
* * * * ** ** * * ***** * ** *
* * *** * * ****** * * * * *** * * * *** * *** **** ** ** * ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
*** ** * * * *** ** *** ** * * ** * *** *** * * **** * ** * * *** = * * **** * * **
* ** ** * * * * ** * *** *** * **** * * ** * ** * *** * ** ** * * = * * * * *** *** * **
* * * * ** ** *** * * ** ** ** * * * **
* * * * * * ** *** 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* * *** * ** *** *** * * * a,b,c,x1,x2,D;
** **** * * *** * *** ** ***** * * %f *** * ** *** * ** * * *
** ** * * ** *** ** ** ** * ** *
** * ** * * ** * * ** * = (-b + sqrt(D))/(2*a);
* ** * ** * ** *** * ** ** = (-b - sqrt(D))/(2*a);
* * ** * * * * *** * * **
* * ** **** * * * * * ** * ** * **** *
** ** * * ** * * * * ** ** ** ** *** ***** ** ** **** ** * * * * of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
* **** **** * *** * * * *** * ***** * * ** *** *** ** * *** **** * * * = %.2f\n",x1);
*** ******* * **** * **** *** ** * *** * ** * * * * ***** * ** * = %.2f",x2);
* * * ******* ** ** ** * * * * *** **** * ** * *
*** * * ****** * * * ** if(D==0)
* * *** *** * * *** ** *** ** * * ** *
*** * *** * * * * *** **** * * ** ***** ** * ** ** * *** ** ***** ****** *** * * * of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
** *** *** * * ****** * * * *** ** * ** **** * ** * ** *** ** * = x2 = %.2f",x1);
*** ** * * **** * * *** * ** ** **** * ** * * **
* * ** * ** * * * * ** ***** **
* * * * * ** * ** ** *** **** * * * * * **** **
** ** * * ** * **** ** *** * ***** ** * ** * * * * *** * **** ** of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
***** ** * ** ** * *** ** * * * * * ** * * * * * ** ** ** *** **** * * = **** ***** *
** ** * ***** ***** *** ****** * *** *** ** * ** * * **** *** *** **** ** ** * **** = ** **** * * * * ***
** ** *** ** * * * ** * ** * * *** * *
* ******* *** * ** * *** **** 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
* * *** * **
*** ** * * *
int main()
{
** * *** ** * * * * ** a,b,c,D = 0,x1 = 0,x2 = 0;
* * *** * ** * * * * * * **** **** * * *** * * ** *

* ** ** * * ** * * * ** ** *** of %.2fx^2 + %.2fx +%.2f = 0 ** **** *
** ** * *** ** ** *** = (b*b-4*a*c);
* *** * ***** * * ** ** (D < 0)
** ** * ** * * *** *** * **
***** * ** ***** ** ** ** * * complex and *** **** ****
*** * * ******** **** **** * = * ** * * * ** * * *** *
*** * ** *** * * *** ** ** * * **** * = ** * * * * ** * * *
* ****** ** * ** *** **
** ** * * * * ******* (D > 0)
** ** * ** * * * * *
* * ** ****** ** * ** *** real and ** **** ****
* *** * * *** **** * * * * = * * ** * ** + sqrt(D))/(2*a));
** ** * ** * * ** *** ****** ** = %.2f",(-b - sqrt(D))/(2*a));
* *** * * *** ** *** **
* * * **** * * * * *** (D == 0)
** *** * * *** * *** **
* ** ** *** *** **** * *** real and same\n");
* * * * * ** * *** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* **** *** ** ** * *** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
** * ** *** *
** * *** * * * *
int main()
{
***** ***** * ** ******** a,b,c,D = 0,x1 = 0,x2 = 0;
* ******* **** ** * * **** * ** * * ** ** * ** **** ** * **

**** **** ** * ** ** ** *** *** * of %.2fx^2 + %.2fx +%.2f = 0 * ** *
** * * * * ***** * * * = (b*b-4*a*c);
* ** ******** ** ** * ** (D < 0)
** * ** **** ** **
* * *** * * * **** ** ** * ** **** complex and ****** * *
*** * ***** * * ** ** ** * ** = * * * * ** * *** * *
* * * ***** ** **** * ***** * = * ** ** *** *** * **
* ** ** ** ** ***** **
*** ** ** *** ** * (D > 0)
* ** * ** ** *** **
* ***** * ** * * * *** * *** real and ** * * * ***
**** ** ** * ** **** *** * = * * * * + sqrt(D))/(2*a));
*** * * * ** **** ** *** * **** *** = %.2f",(-b - sqrt(D))/(2*a));
** * * * ** * * * ****
** * * * ** * **** * *** (D == 0)
** *** * **** * **
* * * *** * *** * **** *** real and same\n");
**** * ** * ** **** ** * ****** * * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
** * * ** * ******
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** ** ** * * * * *
* * * *** **** * **
int main()
{
** ** ***** ** * * a,b,c,D = 0,x1 = 0,x2 = 0;
* *** * * * **** * ** * ** * * * *** * * ***

* ** ******* * * ** * ***** * * * *** of %.2fx^2 + %.2fx +%.2f = 0 * ** * * *
**** ** * * * * * * = (b*b-4*a*c);
* ** * * *** * ***** * (D < 0)
* *** * *** * *** *** **
* ** * * ** **** * ** * * * ** * complex and ***** *** * * *
** ** **** *** ** * ** ** * = * ** ***** * * * * **** * * *
* ** **** * * ** ** * * = * * * ** * ** ** *
* ** * ** ** *** ** ****
* **** * *** * ****** ** (D > 0)
* ****** * * * * **
***** * * * **** * *** ** ** ** * real and ** **** * ***
** * ** ** ****** *** * * ** = ** * ***** + sqrt(D))/(2*a));
**** ** * ****** *** ** **** ** ** = %.2f",(-b - sqrt(D))/(2*a));
** * * * * * * * **
** * ***** * * * *** * * (D == 0)
** * ** * ***** * * **
** * *** ** * * * * * * * * real and same\r\n");
*** * * ** * * **** * ** * ** * * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
** ** * * **** * *****
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** * * ***
* * * *** *
int main()
{
** * ********* * *** ** * * a,b,c,D = 0,x1 = 0,x2 = 0;
**** * * *** *** *** * ** * * * * ***** ** *****

* ** * ** ** ** * *** **** ** * of %.2fx^2 + %.2fx +%.2f = 0 * * * ** * ** *
* * *** ** ** * * * * = (b*b-4*a*c);
* ** ** * * ** * (D < 0)
*** * ** ******** * * ***
* **** *** * ** * * *** ** * * * complex and * * ** * * *
* * ** * * *** ** ** * * *** **** = ** * * **** * * ** ***
***** *** *** * * * ******** * * ** * = ** ** ** ** * *** * ****
* ** *** * *** **** * * **
** ** **** ** * * ** (D > 0)
* ** * *** ** * * * *
* *** * ** *** **** * ** *** *** real and **** ** *** *
* **** **** ** * * ** * ******* = **** * * * + sqrt(D))/(2*a));
* * ** ** *** * * * * * ***** = %.2f",(-b - sqrt(D))/(2*a));
*** * ** * ** * ** *
***** ** *** * **** * * (D == 0)
* * **** * * *** * *
** **** * * ****** * * ***** * * real and same\r\n");
** *** *** ** *** *** * ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * *** ** **** * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** * * ** * *
** ** * * *
int main()
{
* ** ** * ** **** * * a,b,c,D = 0,x1 = 0,x2 = 0;
* *** * * **** * ** * * ** *** ** * * * ** * *

*** * * ** * ** * * ** * of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
* ** ** * * * ** * * = (b*b-4*a*c);
******* ***** ** ** *** * * = (-b + sqrt(D))/(2*a);
** * * ** * * * = (-b - sqrt(D))/(2*a);
* *** ** ** ** * * * * (D < 0)
** * * ** * *** * *
* * **** ** **** ** *** ** * *** * * complex and * **** **
** * * *** *** *** ** * ** = ** * * ** *** * **** ** **
* ** ****** ** * *** ** ** * * * = *** *** * ** * **** ***
**** * **** ** *
** * * * * ** ** ** (D > 0)
** ** **** ** * * ***
* ** * * ** *** * ** * ***** ***** real and * * *
* *** * * ** *** ** ** * * * ** = *** * *** * * **
* *** ** * * ** ** * **** * = %.2f",x2);
***** ****** ** *****
* * * * ******* *** ** * (D == 0)
*** **** * * * ** ** *** * *
*** * * *** * ***** * *** real and same\r\n");
***** * * * ** **** * ** ** = x2 = %.2f",x1);
* *** ** * ** ***** ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.71.254.84
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users