0 like 1 dislike
11.9k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 11.9k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
* * **** * *
** * **** * **

int main() {
** * **** ** * * * ***
*** * * * ** * ** * **** %f * ** * &a, &b, *
* ** *** ***** * * ** * * ** ** *
**** * * * ** ** * * * * {
* * * * * ** *** ** ******* * * * * ***** ** ** * *** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * * = * ** ** = *** * **** * a, b, c, (-b)/(2*a), ** * * (-b)/(2*a), *
*** * ***** * ** * ** *
* ** ** ** * ** * * if(d==0) {
** * *** * * ** ** ** * *** *** *** ** ** * * ** * * * * *
* ***** * **** *** * ** * * **** * ** * ** ****** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = **** ** * * a, b, c, x1);
****** * * *** * * * ** **
*** ** * * * * * * * * * * ** ** ** * {
* ** *** * ** * * * ** * ***** * *** **** ** * ***
* * * ** * * * * * * * *** * * ** *** * ** * * * ** * *
** ** **** * * ** * ** * * * * *** * *** * ** ** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * ** * ** = %.2f\nx2 = * ** ** * a, b, c, x1, x2);
* * * ** ** * *** **** *
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * *
* *** * ** *** * ** **
#include **** **** *

int main()
{
** ***** *** * ** * ********* ****** *
** * *** ** * *** * ** ** %f ** * * ** *** **** * **
* ** ** * * * *****
*** *** * * ** * * ***** ***
* ** ** ** *** *** ** *** * **
* * * * ** * ** **** *
* ** **** * * **** * ** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and * * *** = %.2f\nx2 = * ** ** * **
* **** *** ** * ******* if(D==0)
* **** * * **** * * ** ****** * *** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = **** ** **
**** ***** ** * ****
** ** ** *** **** * ** * * ***** *** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * = * * ** = *** ** * *** ** ** ***** ** **** *** * *
* ** * ** ** * *** * ** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * *** ****
**** * * * * ****
* **** * **** * **

int main()
{
** ** ***** ** * * ** ** * ****
** * ** * ** ** * * * * ** ** * * %f * ** * ** **** * *
* * ** ** * ** * ** *
***** * ** * * * *** * ** * **
***** ** * ** *** * *** * ** ** *
** ** * *** * * ** ** **
** ** * ** * ** * ** ** ** * *** of %.2fx^2 + %.2fx + %.2f = 0 are real and **** * = %.2f\nx2 = * * *** **
**** **** * * * **
* ** ** * ***** * * * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * **** ** * **
** *** * * * * *** *** *
* **** * * **** * * ***** * * * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * ** * = %.2f + ***** = %.2f - * * **** **** * *** ** * *** *
** * *** * * ***** * * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
** ** * * ** * ** a,b,c,x1,x2,D;
******** ** * * *** * *** * %f * * ** *** * * ** * * *
* ** **** * * **
* ** * * * **** * * ** = (-b + sqrt(D))/(2*a);
****** ** * *** * * * * = (-b - sqrt(D))/(2*a);
*** * * ** * * *** * * ***
* * * ** * * * * ** ** ** *** * *** ** ***
* * ** * * ** ** * ** *** ** ***** * ****** *** * ** ** * * * ** ** ** ** * **** of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* *** * * *** ****** * ** * ** *** ** ** ***** **** ** * * ***** * ** * * = %.2f\n",x1);
* ** * * * ***** **** * * ** **** ** ** *** * * ** *** ** **** = %.2f",x2);
*** * ** ** * * ** ** ** * ** * * *
*** * * *** ** ** **** if(D==0)
* * * ** * ** ***** *** *** * ** **
****** **** ** *** ** * **** **** * * ** ** ***** * * * **** * ****** * * * ** *** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
*** ******* *** * ***** * * * ** * *** **** *** ****** * ***** *** = x2 = %.2f",x1);
***** *** ** ** * * **** * *** **** ** * ***** **
* *** **** ******
*** * ** *** *** * * ** *** * ** * * ** * * **
** ****** ** **** ** *** ** * ***** ** ** * ** * * * *** *** **** **** of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
** *** **** * ** * * ** * * *** * ** * * ** * * * ** * * ** * ** ** * * *** **** * * * ** = ** * *** * * ******
* *** ** ****** * * * * *** * *** *** **** * ** * ** ** * * **** * = * * * *** ** ** * * *
* *** ** ****** * ** ** * * * *** ** * * * * *
* * *** *** * *** *** 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* * ** * * * ** * * a,b,c,x1,x2,D;
****** * * ***** * * **** * * %f **** * ** * * ** ****
* ** ** **** * * * * **
*** * * *** * * * * * = (-b + sqrt(D))/(2*a);
* **** * * ** **** * = (-b - sqrt(D))/(2*a);
** * ** * ** ***
** * * ** **** ** **** * ** *** *** ** *
* * * *** * *** ** ** ***** * * * * ** * ** * ** * * * *** ** * **** * *** *** * of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
*** * ** ** ** * ** * * *** * *** * * * * * *** * ** * * * * ** ** = %.2f\n",x1);
** *** *** ** * * ** ******* * * ** ** ** ***** ** ** ** * * * *** = %.2f",x2);
* ***** * ***** *** ***** ** ** * ** * ** *
* ** ** * ** * * * * * if(D==0)
***** * * ** * ** ** * ** ** *
****** ***** ** * * * *** **** ** ** * * * * ******** **** *** * ***** ***** ** ** of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
** **** * * ** **** **** *** * * * * ** * ** * ** *** * * * * = x2 = %.2f",x1);
**** * ** ** **** ****** * ** *** ******* **** * ***
* *** ** *** * *** ****
* * * **** *** ** ** * * ****** * **
* ** * * ** * **** * * ** * ** ** * * ** *** * * ** ** * * ******* of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
** ** **** * *** * * ** ** ********* * * ** * * * * * * ** **** * ***** *** * * *** = ** * * *** * ** *
* ** ** * * ** *** * * * ****** **** *** * * * * * * *** * ******** * *** ** * = ***** ** *** ***** *** * *
** ** ** * **** ** * ** ** *** ** ** ** * **
* ** * * **** * * * **** * * 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
* ** * * *** * *
** *** ** ***
int main()
{
** ** * ** * * * a,b,c,D = 0,x1 = 0,x2 = 0;
* * ** * * * ****** * *** * ** * * * ** ** * * **

* * * * ** * ** * ** ********** * of %.2fx^2 + %.2fx +%.2f = 0 ** ** ** *
* * * **** * * **** = (b*b-4*a*c);
* * ** * * * * ** (D < 0)
* * ** * ** ** * ***
** * * ** * *** * * * *** * complex and ** * *
** * * * * * ** * * = ** ****** * * **** *** **
** ** * * ** * * ** *** * ** ** * **** * = * * ***** ** *
**** ** *** * * ****
*** * ** **** * * * (D > 0)
* * **** **** * * *
* * ***** *** * * *** * ** * *** real and ****** * ***** *
** * * * *** * * * * * = *** ** * + sqrt(D))/(2*a));
* * **** * *** **** **** ** *** * = %.2f",(-b - sqrt(D))/(2*a));
* * * * ***** * ** * *
*** ****** * **** (D == 0)
*** *** * *** * * * ***
* *** *** ** ******* * * * *** real and same\n");
* **** ****** **** *** * * ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
** *** * *** ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* **** * *** *
** * ** * * **** *
int main()
{
** ** * * *** ** * ** * * * a,b,c,D = 0,x1 = 0,x2 = 0;
* *** ** * * * **** * * ** * * **** * **** * * * * **** ** * **

* *** ** * ** * *** * * * * ** * of %.2fx^2 + %.2fx +%.2f = 0 ****** ** ***
* * *** * ***** ** = (b*b-4*a*c);
** * * ** ***** *** * (D < 0)
* ** * ***** **** * * * **
*** * ** * * * ** * * * complex and * * ** * *
*** ** ** ****** * ** * ** * = *** ** * * ** * *
** * *** ** ** *** *** ***** * * * * = ** ** * ** ****** **
** ** *** ** **
* *** * * ** ** ** ***** (D > 0)
* * * * * * * *
** *** ** ** ** ** ** *** real and ** * ***
* * * ** ** * * ** * *** ** = * * * ** ***** + sqrt(D))/(2*a));
** * *** * * *** * *** ** = %.2f",(-b - sqrt(D))/(2*a));
* * * **** * * *** **
* * ****** * ** * * *** (D == 0)
* * * * *** ** * *
* ** ** * ** * * * ***** * ** real and same\n");
********** ****** * * ** * * *** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * ** * *** **** ** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
*** * ** * **
* * * **** *** *
int main()
{
* *** **** * *** * ** * a,b,c,D = 0,x1 = 0,x2 = 0;
* * ** ** ****** **** ***** **** ** ** ***** *** * ** * *** ** * *** * *

* * **** * * * ** ** ** ** ** * **** of %.2fx^2 + %.2fx +%.2f = 0 * * ******
*** ** **** * *** ***** * = (b*b-4*a*c);
** * ** * ** * * * ** ** (D < 0)
*** ** * * *
* * *** ** **** *** * * ** complex and * **** **
***** ****** ** ** * ** *** ** * **** = ******* * * ** *** ** ** * *
* ** *** * ***** ** *** *** * * * = ** *** ** ** * ****
* ** * * ** ***
** ** *** * * * ***** (D > 0)
***** *** *** ***
** * * *** *** ** * * * * * real and * * * ** ***
** * *** ** **** ** * ** = * *** ***** ** *** + sqrt(D))/(2*a));
* * * **** *** **** * ** ** * = %.2f",(-b - sqrt(D))/(2*a));
** * * * * ** *
* * * *** * ******** ** (D == 0)
** ** * * * **** *** ** **
*** * * *** ** * * ** real and same\r\n");
* ** ** ** * * *** ** *** ** * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * *** *** **** **** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* * * * * * * *
* * ** ***** * * **
int main()
{
* * *** * ****** ** ** * ***** a,b,c,D = 0,x1 = 0,x2 = 0;
** **** **** * **** **** ** * ** ****** **** * *

** ** * ***** *** ***** ** * ** of %.2fx^2 + %.2fx +%.2f = 0 * * ** ** * *
* * * ** *** * * * ** * = (b*b-4*a*c);
* **** *** * * ** *** (D < 0)
*** * ****** ***** *
*** ********* * ** * * * * complex and ** * * * *** * *
* **** * *** * * **** * = ** * ************ ***** * *
*** * ** * * * * ***** = ** * ******* * * ** *** ** *
* * * * ******* ** *
* ** ** * * * * (D > 0)
** * * *** ** *** **
** * **** * ** * * *** * ** real and * * * ** ****** *
* * * ** * ****** * * * * * * * = ** ****** + sqrt(D))/(2*a));
* ** *** * * ** *** * ** = %.2f",(-b - sqrt(D))/(2*a));
** *** * * *** ***** ***
* * ********* * * ** *** (D == 0)
* * **** * ** *
** ** **** * * * ** * *** * real and same\r\n");
* ** * * ** ** * * * * * * ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * * * * *** ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
******** * *** **
** * * ** *
int main()
{
** * ** *** * * * ** * a,b,c,D = 0,x1 = 0,x2 = 0;
** ** ** *** * *** *** * **** * ** * ** * * * * * *********

** *** ** *** ** * ** * ** * * * * * of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
****** *** * ** ** = (b*b-4*a*c);
*** * *** * ****** = (-b + sqrt(D))/(2*a);
*** * ** * * ** = (-b - sqrt(D))/(2*a);
** ** * * * * * * ** ** (D < 0)
*** *** * * * **** *
***** * * * * ** * * ** * * * complex and ***** *
** ***** * * ** * * * * * = **** ** *** * * **** * *
* * * ** ********* * *** **** = ***** *** * ** * * ** * ******
** ** * ** **** ** ** ***
* ** *** * *** * * ** (D > 0)
** * * ** *** * ****
* * * * * * ** ** **** * real and * * ***** * *** *
* ** ** * * ****** * * **** * = * * *** *
*** * * * * ***** * * * * * *** * = %.2f",x2);
**** **** * * *****
*** * * * ** * ** (D == 0)
* *** ** ******* *
* ** ** ***** ** * * * *** *** real and same\r\n");
* ***** * * ** * * ** = x2 = %.2f",x1);
* * * *** ******* **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.130.70
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users