0 like 1 dislike
12.2k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 12.2k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
** ** ** * * *** * *
* ** **** ** ***

int main() {
** * * ** * * * * ** * * * ** * *
* ***** ** ** * ** *** * %f * * ** &a, &b, * * * *
*** * ** * * **** * * *
* * ** * ** *** *** * * * {
*** * * * ** *** ** ** * * * ***** * ** *** * ** * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * *** = ** = ** * * * a, b, c, (-b)/(2*a), * ** *** (-b)/(2*a), * * ** *
* * ** * ******* * **
* * * ******** * * *** if(d==0) {
** ** ** * * * * ***** ***** *** * ** ** * * **** ***** ***
* **** * * * * * * * ** ** * **** **** ****** * * * **** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ** **** a, b, c, x1);
* * * * * * * *
**** * *** * * **** * * * * * * * {
* * *** * *** **** ****** *** * ** * **** ** **** *
** * ** *** * * ** ** * ***** **** * * * *
* *** * * ** ** * ** * **** ** **** ** * *** **** **** of %.2fx^2 + %.2fx + %.2f = 0 are real and ** ** * = %.2f\nx2 = **** * ** a, b, c, x1, x2);
** * ** ** ***** * *
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ** *** * * * * ** * *
* * * ** * * * * *
#include ****** * ** *

int main()
{
* * ******* ** ******** *****
** * * * * ****** ******* %f **** * *** **** *** ***** * *
****** * ** * * * ***** *** *
** ** **** **** ** * *
* * ***** ***** * * * * *
** *** ** * * * * ** * * *
******** * ** * **** * ********* of %.2fx^2 + %.2fx + %.2f = 0 are real and * * = %.2f\nx2 = *** *** * * *
*** ** * ** ** *** * if(D==0)
**** ******* * ** *** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ** **** *
** **** ** **** *** **
** * ** * * * * **** * *** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * **** * = * * = ** *** ***** * ** ******* * * * * * ** * **
* * ** ** *** **** * * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include *** * ** * * *
***** * * ** *
** ** * * ** ****

int main()
{
* *** *** * * * ** * * *
* * * ** ***** * **** * * * * %f ** * * ***** **** ** * *
**** * **** *** * ** **** *
** *** * * * ***** ** * *** *
*** *** ** **** **** ** * ** *
** ** * * ** * * * ******* **
**** ****** *** * * **** * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and **** = %.2f\nx2 = ** * *** *** * * *
** * * * * * * * **** *
* *** ** * ****** ** *** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * * * *
* * ** **** * ** ** *
** * ** * **** * * * ** ** * **** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * * = %.2f + * *** = %.2f - * * **** ** ** * * * * * **
* * * *** **** * *** * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
**** * ** *** ** ** * ***** a,b,c,x1,x2,D;
* **** **** * ** *** * %f * * ** ** * * * * *** **
* * * * ** * **** *
********* ** ** *** * ** = (-b + sqrt(D))/(2*a);
*** *** *** *** * *** ** = (-b - sqrt(D))/(2*a);
** ******* * ** ** * *** * * * *** *
* * * * *** *** * *** * *** * **
** * * *** **** * *** * * ******* * * ** * ** ** * * ** *** **** ** *** ** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* * *** * * * * * *** * * *** *** **** * ** **** ** * * * * * = %.2f\n",x1);
** ** **** * * *** ****** * ** **** * ** * *** * * * *** * **** * *** * = %.2f",x2);
* *** * * * * * **** ** *** *** * * ** * * *
* * * ** *** ** * *** * if(D==0)
* ** * *** * ******* ** * * *
*** ** *** ****** ****** * * ** * * ** ** * *** ****** * **** ** * ***** *** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
*** * ** ** * ** * *** * ** *** * * ** * * * * ** * ** ** * ******* = x2 = %.2f",x1);
*** * * * * * * * * *** * * * ** * ** * **
* ** ** * *** ** ** **
* *** ** * *** * * * * * * * * * ***
* * * * * **** ** ** ** *** **** ** * * **** * *** * * **** * ** **** **** * * * *** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
** *** ** * * *** *** ***** ****** * * * ** ** * **** *** ******** = ** ****** ** ** * *
** * *** **** * * * * * * ** *** *** * * * *** **** * * * * ** ** * * = ** ** **** * *** *
********* * *** ** * *** *** *** * * ****
* **** * * * * * * ** ** 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* * * *** * * * *** * * a,b,c,x1,x2,D;
* ** * * ** **** ** ** * *** * %f * ***** **** ** ** *
*** * *** *** * * ** ** *
******* ** * *** * * * *** = (-b + sqrt(D))/(2*a);
****** *** ** * * * = (-b - sqrt(D))/(2*a);
** ** ** * * ***** *** * ** ** *
** * * * *** ** ** ** * * ** * ****
* * * *** * * * ** * * ** ** **** *** ** ** * * ** * **** ** ** ** *** of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
* ** ** **** **** * * ** **** * * * * * ** *** ** * * * * ** ***** * = %.2f\n",x1);
* * * * ** ****** ** * *** **** ****** **** *** ** * * ***** * * ** * * = %.2f",x2);
* ***** ********* * * *** *** * * **
* * * * * ** ** * if(D==0)
**** * * * *** * ** *** *** * *** *
* * * ** *** * ** * ****** * *** * ** * * * *** *** ** ** * * * * * * ** * of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
* * ** ******** * *** * *** * *** **** **** * * * * * * * ***** ** ** = x2 = %.2f",x1);
** **** * ** * ** * * ** * * *
* * * ** ** *** **** * *
*** * ** * * * ** * ** * * ** ** * *
* ** ** * * *** * ***** ** * ** * ** *** ***** * ** * ** ******* * * ** ** * ** ** of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
** * * * * * * * ** * * *** ***** * * ** *** *** * * ** * *** ** ** = ***** **** * * *** * * *
* * * **** ** ** ** * * * * * * * *** ** * ********** *** * ** *** * * ** ** ** = *** * * * * * * ***
*** * ** * * * ** * * * * * ** *
** * * *** * * *** ** 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
*** * ** ** *
** * *** * * *** *
int main()
{
* * * * *** * * a,b,c,D = 0,x1 = 0,x2 = 0;
* ***** *** * * ****** * *** * * * ** *** * ****** ** * * *

*** ****** *** * * * ** * * of %.2fx^2 + %.2fx +%.2f = 0 * * ***** *
* ** ** * ** ** ***** = (b*b-4*a*c);
* * * ** **** * * * (D < 0)
* ** *** ** ** * **
** * * * ** * * ** ** ****** * complex and ***** * ** ***
* * * ** ****** ***** * **** * ** ***** *** = * ** * * *** * **
*** ** * * *** ** * * ** * * * * = * ** ** * * *****
*** **** ** *** * **
* * * * * ***** ** ** * (D > 0)
** * * * *** ** * * *** *
* * ** ** ****** * ** ** *** real and * ** * * *** *
* * ** ** ********** * *** * * ** * * * = *** **** + sqrt(D))/(2*a));
*** *** ** ***** ****** ** ** ** = %.2f",(-b - sqrt(D))/(2*a));
**** *** ** ** *** * ** *
** * ** ** * *** (D == 0)
* * ***** * * *****
* **** * ** ** ** ** * ** * ** real and same\n");
* *** ** * ** * * * ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
** *** * * * * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* * **** * ** * * *
* * *** * * ** * *
int main()
{
** ** **** *** * * * ** ** a,b,c,D = 0,x1 = 0,x2 = 0;
* ** ** ******* **** ***** ** * ** ***** * * ** *** * * * ****

* * ** **** * * ** *** ** ** *** * of %.2fx^2 + %.2fx +%.2f = 0 * * * **
* *** *** ** * ** * = (b*b-4*a*c);
** * **** * ******* (D < 0)
* **** ** * * ***** *
* * * **** ****** * ** * * * ** ** complex and ** ** * * * *
*** *** * ** * * **** ***** ** = * ******* ** * ***** ** **** ***
* * * ** ** * ** * * * *** *** = * *** * * ** * *****
***** *** *** * ***** *
** **** *** ** * *** * * (D > 0)
******* * * *** ****** **
***** *** ** **** * * ***** real and * * * **
****** * ** * * ** ** ** *** = * * ** *** *** ** + sqrt(D))/(2*a));
* * * * * * * * ** ** * **** = %.2f",(-b - sqrt(D))/(2*a));
* ** ***** * * * **** **
*** * ** ** * * * ** (D == 0)
** * **** * * * **
** * ** *** **** ** * * * ** real and same\n");
**** * * * *** * ** * * * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
***** **** ** * * ***** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** * * ** * * ***
***** ** * *
int main()
{
******** * *** * *** * * * a,b,c,D = 0,x1 = 0,x2 = 0;
******* **** * * * * * * ******** * * ** * * * *** * * * ** *

* * * ** * *** **** ** * of %.2fx^2 + %.2fx +%.2f = 0 * ** ** * **
* *** *** * * ** ** *** = (b*b-4*a*c);
* ** * * *** **** * * * (D < 0)
* ** **** * ** * *****
* ** * * * *** ** * * * **** complex and ** ** *
*** * ** ** * ** * * ** = * * * *** *** * * * *
* * * * *** * * * * * * ** * = * * ******* * **** ***** ***
* * * * *** * * * *
* **** ** ** * *** ** (D > 0)
** *** * ** ** * * **
** ** * ** **** * ** * *** *** real and * ** *
* * * **** *** * ** * * * *** * * = * ** ** ** ** + sqrt(D))/(2*a));
* **** * ** * ** ** * ** * * = %.2f",(-b - sqrt(D))/(2*a));
**** * ***** ** ** * *
* * * * * * * * ** * (D == 0)
* ** * *** * ** *
** ** * ** * * * * ** * real and same\r\n");
* ** * * * * * *** ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * * * ***** * * ** * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* *** *** * **** *
**** *** * *
int main()
{
* *** ** * *** * * ** * a,b,c,D = 0,x1 = 0,x2 = 0;
* ** * * **** * ** * * ** * * *** *** * *** * * * * *

***** * ** ** * * * * **** ** of %.2fx^2 + %.2fx +%.2f = 0 * * *
* * *** ** * *** ** * * = (b*b-4*a*c);
* ***** ** * * * * * * *** * (D < 0)
****** ***** * * * * *
* * ** *** * * **** * * *** * complex and * * * * * **** * *
** * * ** * * * *** ** * ** = ** * *** * ** ** *
*** * **** * * * * ** * * ** * = *** ***** **** ** ** *
** ** * * * * **
**** *** **** * ** * * * *** (D > 0)
* ** * ** ** *** **
** * * *** ** * **** * **** * real and * **** **** * *******
*** * * * ** * * * * * * *** * = *** * * * + sqrt(D))/(2*a));
** * ****** ** **** * ****** * * * * = %.2f",(-b - sqrt(D))/(2*a));
** ** * *** *** *
*** * ** ** ****** *** (D == 0)
****** *** * * *
* * * * *** *** ** ** * ** * real and same\r\n");
** ****** * * *** ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* ** ** * ** * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* * * ** ** ***
* ** ** * * ***
int main()
{
* *** ** **** * * * *** ** a,b,c,D = 0,x1 = 0,x2 = 0;
** *** * ***** **** ** * *** ** * * * * * * ** ***

** ** ** * ** ** * * * * of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
* ** ** * *** ** * * = (b*b-4*a*c);
* * * * * ** * * *** = (-b + sqrt(D))/(2*a);
* * *** ** * * * * = (-b - sqrt(D))/(2*a);
* * * * ******* * * * (D < 0)
* **** ** **** ***
* * * * * * * * * * * * complex and *** * ** * ** *
*** * * ** * * ** * ** * * ** = * * * * **** ***** * ** ***
* ** **** ** ** * ** * * * * * * * = * * *** ** **** ** *** *****
**** * ** * * *
***** ** * ** * ****** *** ** (D > 0)
* * * ** * ******** **
** **** * * * *** * * * real and **** ****** * *
*** * * * ***** * ** * = * **** ***
* ** ** * *** ** * ** ** ** ** = %.2f",x2);
* ** **** ** *** ** **
** * * ***** * ** (D == 0)
*** ** ** ** * * **
** * ******* ** ** **** **** *** real and same\r\n");
** * ** * * ** ** ** * ** * *** = x2 = %.2f",x1);
* ** ** * * * * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:108.162.241.184
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users