0 like 1 dislike
15.8k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 15.8k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
* *** * ***
* ** ** * ****

int main() {
* ** * * ** * *** ** * ** * *
* *** ***** ****** ** *** * * %f ** ** &a, &b, ***** *
** * * * ** * ** *** **** *
** * **** * **** * *** *** * {
* * * * ** ****** * * *** *** * *** * ** ******** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * *** * * = **** * * = *** ** ** * * a, b, c, (-b)/(2*a), *** * * (-b)/(2*a), *** * *
* ** *** * *** *** ** *** *
* * * * *** **** ** * ** ** * if(d==0) {
* * ***** * ** * ** * ** * * ** * * ** **** ** *****
* * ** *** * *** * ** * * * * *** * *** * ** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ******** *** a, b, c, x1);
* * * * *** ** ** * * *
* *** * * * ** * **** * ** * {
* * * *** ** *** *** * * * ** * * * * * ** ** ** *
** *** **** * *** ** * * ***** * * * * ** * ****
** * ** *** * * *** ** ** * ** ** ** ** ** *** * *** ** * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * ** * * ** = %.2f\nx2 = ** * * a, b, c, x1, x2);
* *** ** ** * * *** *** *
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * * * *
* ** * *
#include ** * * *** **

int main()
{
*** ******* ** **** ** * * * * *
* ** * ********* **** ***** ** * ** %f *** ** ** * ***** *
* ** ** * * * * ** * *
**** * ** * * ** * * * * * *** ** **
* * ** *** *** **** * *** ** *
***** * * * * * * * **
** * ** ** * ** * * * ** * ** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and ** * = %.2f\nx2 = *** * ** **** *
** ** * *** ** ** * ** ** * if(D==0)
* **** * *** **** ** ***** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * * ***** **
*** ** * ** * ** *** ********
* * **** ********* *** * * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * ** = * * *** = * * * * * ** *** ** * * * * *****
**** ** * * * * ** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * *** * * ** *
* ** *** * ** *
*** * ** ***

int main()
{
** * ** * * * * ** * *** * * * ** ** * *
* ***** **** ** * ****** * * * %f * **** * * ** ** * ** * ***
*** ** ** * *** ** *** * ** * *
*** * * *** * ** ****** * ****
* ** ** * *** ** * **
** ** ** * ** ** * ** ******* *
* ** * *** **** *** * * * * * ** **** of %.2fx^2 + %.2fx + %.2f = 0 are real and ** = %.2f\nx2 = * *** *
* ** ** ** ** * * ** ** * ***
* * * * * **** * * * ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = *** ** ** *** * ***
**** * ** ** * ** ** ***
*** *** ** *** *** * *** * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and ** ** = %.2f + ** = %.2f - ** **** * * ***** ****** ** **
* ** *** * ***** * *** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
** **** ***** ****** ** * a,b,c,x1,x2,D;
* * * * *** ** ** *** * %f * * ***** ** * *** *** * *
* ** ***** * *** *** *
**** * * * * ** **** * * = (-b + sqrt(D))/(2*a);
* ** * *** * * = (-b - sqrt(D))/(2*a);
** * * ** **** * ** * * ** * **
*** ** ** * * * **** * ** * *** ** *
* ***** * * * * ** * * *** *** ***** * * * * * *** * ** * ** ** ** * *** ** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* * * **** ** ** ** * *** ***** * * * * ** * * * * * = %.2f\n",x1);
** ******* *************** **** * ** ** * * *** ** * * ***** ***** ** *** **** * ** *** * = %.2f",x2);
** * * * **** ** * *** * ** ** ** *
* * * * * * * ** * *** * if(D==0)
*** * *** * ** * * ** ** ** * *
* ** * ** * ** * *** **** ** **** * * * * * * * *** *** * ** * * * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
* *** *** ** * * * **** ** * *** * ** **** * * * * * * *** * * * = x2 = %.2f",x1);
** ** ** ** ** ** * ** ** * * *** ***
* **** * * **** **
* ** * ** * ***** ** * * * * * ******** *
* ** ** *** * * * * * *** * * ** ************ * *** *** ** * * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
** * ** * * *** * ** ** * * ** ** * ** ** ** * **** ** * ** * = * * * * * ***** * **
* *** * * * ** **** *** ** **** ***** ***** ** ** * *** ** ** ** * = * * *** * * ** * * ** **
* * *** * ***** * ** ** * ** * *** ****
**** * * * * ** 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* ** * ** ** ** ** ** * *** ** a,b,c,x1,x2,D;
** * * ** * ****** *** ** * * %f * * *** ** * * * *** * * **
** * ** *** ** * * * * **
*** *** *** * ** ** * = (-b + sqrt(D))/(2*a);
* * * **** ** * = (-b - sqrt(D))/(2*a);
***** * ** * * ****
* * ** * * * **** ** ***** ** **** * ** *
* ** ** *** ** * * * ** * * *** * ***** ** * * *** ** * *** * * *** of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
* * * * *** * ****** * * * ** * * * *** ** * * * * * ** * * * * = %.2f\n",x1);
** * * * * * ** * * * **** ********* * * ** ** * * *** ** * ** * *** * * = %.2f",x2);
* ** * * * **** ***** * * * *** * ***
* ** ***** * * ***** if(D==0)
* ** ** * * * ** * * * ** * **** *** *
*** ** * * **** *** * * ** * * ** * * *** * * **** *** * * *** * * **** * * * * * of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
** ***** * * ***** * * *** * * * * * **** ** ** ***** ******** **** ** * ** = x2 = %.2f",x1);
* ** **** ** ** * * * **** ** ** * *****
* ** ** * **
* ** * * **** * * **** * * * * *** ***
* * ** * ** * *** ** *** ** *** * ** * *** ***** * **** * * * * * ** ** of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
** * ***** ** * * ** ** * **** * * * * ******* * * ** * * * * * *** ** * = * * ***** ** * **** *
***** ****** **** ** * ***** ** * ******* * * **** * ** ********** *** ******* *** * = ** **** ** ** ****** ***
***** ** * *** * ** ** ** ** *** * ** *******
** * * ***** **** ** * 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
****** *** ** *
* * ** **** *
int main()
{
****** *** * *** ***** ** * ** * a,b,c,D = 0,x1 = 0,x2 = 0;
******* ** * ** * ******* * * ** ** * * * * * * **********

*** * **** *** **** *** * * * * of %.2fx^2 + %.2fx +%.2f = 0 * ** *
* ** * ** * * = (b*b-4*a*c);
* ** ** * * * ** ** (D < 0)
* * * ** * * * ** *
* ** **** ** *** * ** ** complex and * * ** *
* * * * ***** * * ** * * * * ** * * = ******** * ** * ** * ** *
** ** * * *** * ** * *** * * * * = * * * * ** *** * * * ** *
** *** ** * ** * * ** *
** * * * ** * ****** * (D > 0)
* ** ** * * ** * * * * *
* * * ** ****** * **** ****** real and * * * ***
* * * * * * * * * ** * **** = * * * + sqrt(D))/(2*a));
* * * ****** *** ** *** ** ** **** = %.2f",(-b - sqrt(D))/(2*a));
* * **** * *** * *
* ******** *** * * * **** (D == 0)
* * ** * * * * **
* ********** *** ***** * * * * * real and same\n");
* ***** ** * * ******* * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
***** *** **** * * ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* * * **** *
** ** ** ** * *
int main()
{
* * **** *** * * a,b,c,D = 0,x1 = 0,x2 = 0;
* * ** ** * *** * * * ** *** ***** * *** * * **

* * * ** *** * * *** ** **** * of %.2fx^2 + %.2fx +%.2f = 0 *** ** *
** ** * ** * ** ** * ** = (b*b-4*a*c);
** * ***** ** * ***** **** ** (D < 0)
* ** **** ** *** * *
*** * * *** ** *** ** *** complex and **** * ***** *
* ** * * ***** ** * * = * **** **** * * * ***** **
* ** *** *** * * ** ** * ** = ** * ** ** * *
** *** * * * * **
*** * * ** ** ** *** * (D > 0)
** * *** ** ********
* * *** * * * ** ** * *** * ** real and ***** ** *
*** ** ****** * * * *** ** * ** = ** **** * *** + sqrt(D))/(2*a));
** * * * * * * ** ** * * ** ** = %.2f",(-b - sqrt(D))/(2*a));
** ** ** ** *******
**** * **** *** (D == 0)
* ** ** * * *
**** * * * * * ** * * **** * ** real and same\n");
* ** * ** ** * * * **** * *** *** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
** *** * * *** *** ****
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* * *** ******** **
** * * *
int main()
{
**** **** * ** * **** **** a,b,c,D = 0,x1 = 0,x2 = 0;
* * * ***** * * ** * * * * ** *** * *** *** ** *

** ** * * *** * ** *** * * of %.2fx^2 + %.2fx +%.2f = 0 ** * ** ** *
* ****** **** **** * = (b*b-4*a*c);
** * * ** *** ***** *** (D < 0)
* ** ** *** * *** * **
**** * *** *** * * *** * *** * ** complex and ** ** ** **
* ***** ** ** ***** ** * * * ** ** = * *** * * *** ** ** * * * **
*** * **** * *** * * *** * * * = * ** * * * * ***
* * ** * *** * *
* * * ** *** * * (D > 0)
* ** * ** **** ** * ***
* * * ** * **** ** *** real and ***** * ** ***
* * * ** * ** *** * * ***** * * = *** * * * + sqrt(D))/(2*a));
* *** * ** * ***** *** * **** * = %.2f",(-b - sqrt(D))/(2*a));
** * ***** *****
****** ** * ** * ** *** ** (D == 0)
**** * * ** * ** **** **
** * ** * * ** *** * ** * * * real and same\r\n");
* *** * * * **** * * * ****** = x2 = %.2f",(-b + sqrt(D))/(2*a));
** *** *********** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** * * *** *
*** * * * * ***
int main()
{
**** ***** * **** * * *** a,b,c,D = 0,x1 = 0,x2 = 0;
***** ** * * ***** ***** ** ** **** * * *** * *** *** ** * ****

**** * **** *** * * * * * * of %.2fx^2 + %.2fx +%.2f = 0 * *** * *
* * ****** ** ** *** * ** = (b*b-4*a*c);
* ***** **** * ** ** (D < 0)
***** *** * * **** ****
* *** ** ** *** *** * **** **** *** * complex and * * ** * *
******** ** ** * **** * *** = ** * * ** ** * * *** * *
*** * *** *** *** * ** ****** ** ** = * * **** * * *** * *** *
* * *** * ** *** *** **
** ** * * * * ***** *** (D > 0)
* *** * ** * * *** ** **
***** * * **** * * * real and * * * ***** *
** * * *** ** * * *** * *** * * = ** ** **** + sqrt(D))/(2*a));
* * * **** * * ** * ** * * **** = %.2f",(-b - sqrt(D))/(2*a));
* *** * *** * ** *
* * * ** * * (D == 0)
* ** *** * * * *********
******** * ** ** * *** **** ** real and same\r\n");
** * **** * * *** * ** ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* **** ** * *** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
**** * * * ** **** **
** ** * *******
int main()
{
*** * **** ** ** a,b,c,D = 0,x1 = 0,x2 = 0;
* ***** ** ** * *** * **** ** ** * * *

* * ** * * * ** ** *** * of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
*** ** * * ***** ** * ** * = (b*b-4*a*c);
** ** ** **** ** *** * = (-b + sqrt(D))/(2*a);
* * * ** **** * * = (-b - sqrt(D))/(2*a);
**** ** * * ** ** ** ** * (D < 0)
* ** ***** **** ** ** *****
** **** * * * * ** **** * complex and * **** **** *
* *** * ** ** **** ** * * ** ** * = **** ** * ***** * ** * **** *
* * * **** * *** * * * ** = ** ** * * * * *** ** *** *
* **** ** ** * * * * *
* * *** * ****** ******** (D > 0)
**** * ** ** * *
** * * * *** * *** * * * ** *** real and ** ** * * ***
* ** *** * * **** * * * ** * = *** **** *
*** *** ** ** * ** **** * ** * *** * * = %.2f",x2);
*** * *** ** **** * * *
* * * *** *** * ******* * (D == 0)
*** * *** *** * ** ***
** ** *** * ***** ******* * real and same\r\n");
** *** ** ** ** * * ** * * * = x2 = %.2f",x1);
* * ** * *** ** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.179.145
©2016-2026

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users