0 like 1 dislike
7.6k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 7.6k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
** ** * ** * * *
** * * ** ** * * *

int main() {
******** *** * **** ** * *** * ** *** *
* * * * ** ** ** ** **** * %f ** &a, &b, ***** *
* *** ** * *** * * *** ** **
*** * ** * * ** ** * * ***** *** {
* * ** * ****** ** * ** **** ** **** *** *** ** *** of %.2fx^2 + %.2fx + %.2f = 0 are complex and ** ** = * ** * * = * ** **** * a, b, c, (-b)/(2*a), * * (-b)/(2*a), * * ** ***
* ** **** * * * ** *
***** ******* * ** ** * *** ** if(d==0) {
*** *** * **** ** * * * ***** * ** ** **** * * * *
** * * ** * * * **** * **** **** *** * * *** * *** * * * * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * a, b, c, x1);
**** * ** *** *** **** *
** * * * ** * * * ** * * * {
** * ******** ** * * ** * *** * **** ** * * *** *
* * ******* ***** * * *** * * * *** * ** * ** *
** ** * * * * * *** * *** * * ** * ** ** * **** * of %.2fx^2 + %.2fx + %.2f = 0 are real and ******* = %.2f\nx2 = *** *** a, b, c, x1, x2);
** ***** * ** * * ** ***
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ** * *** *
*** * *** * * ***
#include **** * * *

int main()
{
** ** * * * **** ** * * *
******* * ** * ** *** ***** %f ***** * ***** ** * * **
** ** ** ***** * ** * * *** *****
**** ** * ***** * * ***
*** * * ** *** * * ** * *** *****
* ** * * * ****** * ** ** *
* ****** ** * ** ** * *** **** of %.2fx^2 + %.2fx + %.2f = 0 are real and * * = %.2f\nx2 = * * * ** * * ******
** * * * * * ***** if(D==0)
** * **** * ***** * * * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * **** * *****
* ** ** * * * ** *
** ***** ** * **** * * * * ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and ** * ** = * * ** = *** **** * *** *** * ** **** ** * ** * ***
***** ** * **** * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ** * ****
* * * * * ** *
*** * * * ** **

int main()
{
* ** * **** * * * * * * * *** * *
** ****** * **** * * * *** * * %f ** ** *** ** ** * * ** * *
** ** * * *** * ****** *
* * ** *** ** ** *** * ******* * * ** *
** ** * * ****** *** * *** *
* *** ** * * ** * *** *
*** **** ** *** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and ** ** **** = %.2f\nx2 = *** ** * ** * * ***
** ** ****** * * * *** **
* * *** ** * * **** * ** *** *** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ** * *
* ** * * *** **** * * *
* ** * ** * ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * ** * = %.2f + *** * * = %.2f - ** *** ** ** ****** ******* * ** ***
**** * * ** * **** * * * ** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
** * *** * ** * ** ** ** * ** a,b,c,x1,x2,D;
* * * * *** **** ** ** *** %f ** **** ***** * ***** * *****
**** ** *** **** **** ***
* ** * *** ** ** *** = (-b + sqrt(D))/(2*a);
*** * ** * * * * * = (-b - sqrt(D))/(2*a);
** * * * *** * * ****** *
* * ** * *** * * ** *** * * *** ** * *
**** * * *** * * ** * **** ** * * * ** *** * *** * ** * * ***** *** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* * * ** * ***** * *** * * * * ** * ** ** * * * * *** * * ** ** ** ****** = %.2f\n",x1);
**** * * * ** * * * * * * ** ** ** ** * ** * * * ***** *** * ** * = %.2f",x2);
** ***** * *** *** ****** * *** * * * **
** * ***** ** * * * if(D==0)
* * *** ** * * * * * * *** * ** ** * **
* * *** ** ** **** **** **** ** * **** * * *** ******* * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
** * *** * ** * ****** * * ** * *** ** ** * * ** *** * ** *** = x2 = %.2f",x1);
*** * *** * * ** * * ** ** * ** * * ** *********
** * **** * * * * ***** *
** ****** * ** *** * *** * ****** * **
** * **** *** *** **** * ** ******** **** ** *** ** *** **** ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
**** * ** * ******* **** ** * * * * * ** * * * *** ** * * ***** ** ** ** = * ******* *** * *********
** *** * * *** * ** * * *** ****** **** * ** * **** ** ** ** * *** = *** * * * ****** *
*** * *** * *** ******** ** ** ** ** *** ***
* * * * ** * * ** * * ** 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* ** *** ** ** * *** * a,b,c,x1,x2,D;
***** * *** ** ** ** * * %f * * ** *** ** *** * * *
* **** * ** * ** * **** **
* * * * ** * ** * = (-b + sqrt(D))/(2*a);
***** *** ** ** * * * = (-b - sqrt(D))/(2*a);
* *** * * ** * ** *** ****** ** ***
**** ******** ***** **** * * * * **** ** **** *
* * * * ** ***** * * ***** ** * * ** **** * * * *** * * * * * * ** * of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
* *** * * **** * *** ** *** * **** * *** ** ****** ***** *** **** * *** * * * * ** = %.2f\n",x1);
* ** * * ** ** * **** * ***** ** * * * * ****** * * * * * * = %.2f",x2);
*** * * * * * * * ** * * *** * * *
**** ** * ** * ** * * if(D==0)
* * *** * ** ** ** * * **** * ** **
* * ** ******** ** ** ** * *** * ** ** ** * * * ** *** * ** * ** of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
* ** * *** *** * * ** * **** * **** * **** * * ** ** * *** **** ** ** = x2 = %.2f",x1);
**** *** **** * ** * ******* **
* * ** ***** * * * * * *****
*** ** * * *** * * * * **** * * **** * *
* * * ** * * ** ** * * * * ** * ** *** * * * **** **** **** * ***** ** of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
* *** ** * * **** * ***** * * ** * ** ** ** * * **** * * * * * ** *** * = *** *** * * ** * * * * * *
* * ** ** * * * * * * ********* ** ** * **** * * ** ** * * * * * * *** * = ** *** * ** * * * ***
* ** **** * * *** * * *** * ******
* *** *** * * ** * * 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
** *** * *****
******* *** *
int main()
{
* * ** * ** * ** * ** * a,b,c,D = 0,x1 = 0,x2 = 0;
**** ** * ****** *** * * * * * *** ** ** ** * ** ** *** *

** *** * * * *** * * * * * * ** ** of %.2fx^2 + %.2fx +%.2f = 0 * * ** * *
*** * ***** * *** ***** ** * = (b*b-4*a*c);
* * ** ** * **** (D < 0)
*** **** * * ** ** **
** *** * * ** * ***** * ** complex and * * ** ***** * *
* *** * *** ** * ********* * *** = ** *** * * ** * * ***
* ** ** * ** ** * ** *** = ** ** ** ** ** **
******* * * ** ** **** **
** * * ** * * ****** * ** (D > 0)
** *** ***** * *** ***** **
** ** * **** * * ** ** *** * * real and ** *********
** **** * * * *** * * ** * * * ** = * * ** **** + sqrt(D))/(2*a));
* ** * ** *** *** ** *** = %.2f",(-b - sqrt(D))/(2*a));
* *** * * ** * **
* *** *** * * ** ** * (D == 0)
*** ** * ** *** * ** * *
* *** ** ** * * *** * ** *** real and same\n");
* **** * *** * *** *** * * ***** * *** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* *** * * **** * ** **** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* * * * ** *
* **** * **
int main()
{
* * **** *** ***** ** * a,b,c,D = 0,x1 = 0,x2 = 0;
** * *** * * * ** * * * * * ** * ** ** * *

**** ** * ** *** * * * * ** ** of %.2fx^2 + %.2fx +%.2f = 0 *** *
* * ** ******* * ** * * ** = (b*b-4*a*c);
*** ******* * *** * (D < 0)
** * ** * * * * * *** *
* * * * ****** *** * * ***** complex and ** *** **** * *
* *** ** * ** ** ** * *** = * * ** **** ** ** ** *
* * * **** ** * * * ** ** * = * * * * *** * *** * * **
** ** *** ** * *****
* *** ** ** *** * ** (D > 0)
*** * ** *** * ** *
** ** * * ** * * **** real and * **** *** ****
** * *** *** * * * * ** ** * * = * * * ** * + sqrt(D))/(2*a));
* * * * *** *********** * ** = %.2f",(-b - sqrt(D))/(2*a));
** ** ** ***** *** ** **
******** * * * ** ** *** (D == 0)
* * **** ** *** * ** *
*** ** ** **** ** * *** ** *** *** real and same\n");
* *** *** * *** ** **** *** = x2 = %.2f",(-b + sqrt(D))/(2*a));
** * *** * * ** * * **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** * ** * *** * * *
** * * *** *** * ** *
int main()
{
* * ** *** ** ** * a,b,c,D = 0,x1 = 0,x2 = 0;
**** * ** * * ** * *** ** *** ** ** * * * ** * **** * ** *

** ** ** *** *** ** * *** * of %.2fx^2 + %.2fx +%.2f = 0 * * **
*** *** * * * **** * = (b*b-4*a*c);
* * ** ***** (D < 0)
* * *** * **
* *** * ** ****** ** * * * ** * * complex and * * **** ****
* ** ** ***** **** *** ***** * ** ** = * **** ***** *** * **** * **
* *** *** *** *** * * ******* * ** **** = * * *** ** * ** ** * ** **
**** * **** ****** *
*** ** ** **** ****** ** (D > 0)
*** ** ** * * ** ** * **
***** ** ** ** ** * * real and * ***** *
* * ******** *** ** * * ***** * = * ** *** ** + sqrt(D))/(2*a));
* **** ** * *** * * **** **** * ** = %.2f",(-b - sqrt(D))/(2*a));
* * ** * ** * * *
**** * ** * * * * (D == 0)
** * ** ** * *** **
** * ** *** * * * * *** real and same\r\n");
* **** * ** *** * * * * *** = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** ** *** * * * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** * ** * *
* ** * * * *
int main()
{
* *** **** ************* a,b,c,D = 0,x1 = 0,x2 = 0;
* ** * * * * ** * **** * * * ******* * * * * * * * ** ****

* ** ** ***** * * * * **** *** * * ** of %.2fx^2 + %.2fx +%.2f = 0 ** ** * **
* * * * * **** **** * = (b*b-4*a*c);
*** * ** ** * *** * * (D < 0)
** ** * ** ** * * *** * *
***** * **** * * * * * *** complex and **** * **
** ** * *** ** * *** ** *** * = * * ******* ** * **** **
* * *** * ** **** * ** * * = * *** ** * ** * * *****
* **** * * * **
* **** ** ** ** ** (D > 0)
** ** **** * * * * * *****
****** ** * **** ** * ** * real and * * * ** *
** * **** ** * * ***** ** * = * * * * + sqrt(D))/(2*a));
**** * ** **** * * ** ** * * ** * ** = %.2f",(-b - sqrt(D))/(2*a));
* ** * ** * ** * *****
* **** ** * ** ** (D == 0)
* * * * **** *
* * * * * *** ** ** * ** ** * real and same\r\n");
*** *** * ** *** * * * ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* ** * * ** ** ** **** ******
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** * * * * ** * *
*** ** ** ** *** *
int main()
{
** ** **** *** *** * ** a,b,c,D = 0,x1 = 0,x2 = 0;
* *** ** **** ** * *** **** ** ********** * *** * * ** *

** *** * * * * * * * *** of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
* * * ** * *** * * * = (b*b-4*a*c);
* * ***** * ** * ** * * = (-b + sqrt(D))/(2*a);
* * * * ** * ** * ** = (-b - sqrt(D))/(2*a);
*** ** * * * ** * (D < 0)
*** * * *****
** ** * **** * ** ***** ** *** * complex and * ****** * ** *
* ** *** * *** * * * ****** = * ***** * * ** * ** * * * ****
** ** * * * *** ******** ** *** * = ** * * ** * *** * **** *
* * ** * * * ** * *
** * ****** **** * **** *** (D > 0)
** * *** * *********
** ** ** ** ** * ** * * *** ** * real and * * * * * **
* ** * **** * ** * * ** * ** = **** ** *
* ** ** * ** * * * *** * ** ** = %.2f",x2);
* ** * ** * * * * * **** ** *
** * ** ** *** *** (D == 0)
* ** *** * * *** ***
*********** * ***** * * * * * * real and same\r\n");
* * *** * ** ** * *** ******* * = x2 = %.2f",x1);
* ** * ***** ** * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.17.178
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users