0 like 1 dislike
9.7k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 9.7k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
* * ** ** * * *
* **** * * * *

int main() {
*** * * * * ** * ***** * * ** **
** * ** * ****** *** ** * * * ** %f * * &a, &b, ** **** **
* *** * * * * * * * ***** *
*** ** *** * * * * ** *** ** {
* **** * *** **** ** * **** * * *** ** ** * * ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and ** ** = ** * ** = *** * ** a, b, c, (-b)/(2*a), ** * **** (-b)/(2*a), ****** *
* *** * ** * **** **
**** * * ** * ** * * if(d==0) {
****** *** * * * * ** *** * ** *** * *** * * ** *
**** **** * * * *** * ** * * ** ****** * * * * * * * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ** * ** a, b, c, x1);
* * * ** ** ** **** **
*** ******* * * * * ** {
**** * * *** *** ** ** *** * ****** *** *** * * * *** * * **
*** *** * * ******* ** *** * *** ***** * * *
** * ** * *** * *** * * ** ********** * * ** *** * * ****** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * * = %.2f\nx2 = ** *** * * a, b, c, x1, x2);
* ** * * *** *** *
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * * **** * *
*** ** ** * * *
#include * *** * *

int main()
{
* ** ** ** * ****** * *** * * * ** *
******* ** * ** * * * *** ** * ** %f ** *** * ***** * ********** *
* * ** ** * *** ** ***** * ***** **
* ** * * *** * * * * ** ** * * ***
**** * * * ** * * ***
** * ** *** ** * * ** ** * **
* * * * *** ** * * * ** * ******* of %.2fx^2 + %.2fx + %.2f = 0 are real and * * * * = %.2f\nx2 = * * * **** * *
***** ** ** * * * *** ** if(D==0)
** * * * **** * * ** ***** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ** * *** *
*** *** ** *** * **** *
* * * * * ** ** ** ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and ** **** ** = * * = * * * *** *** ***** ** * * * ****
* ** * ** * *** * * ***** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ** * **** *
* * * *** * * *
* * ***** * **

int main()
{
* * * * *** *** * * ***** *
** * ** *** *** ****** * * ***** * %f ** * ** * * * * ***
** *** *********** * *****
* ** ** ** * ** ** ** ** ***** *
* * ***** * * * * ** * * ** *** *
* ** * * *********** * * *
*** ** * * ** * *** ***** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * * *** = %.2f\nx2 = * ** *** **
****** * ** * **** * * ** ***
*** * * * ** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ** ** ** ****
* * ** ** ** * * * **
* **** * ** * * * ** * ***** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * ** * = %.2f + * * = %.2f - ** *** ** ***** * * ** ** * * *
***** ***** ** * ** ** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* * * ** * a,b,c,x1,x2,D;
** * * * **** ***** * ********** * %f ** *** * **** * ***** ***
** * ** **** * ** ** * * * * *
** * ** * ***** * *** = (-b + sqrt(D))/(2*a);
* *** * ** ***** * = (-b - sqrt(D))/(2*a);
** ** * * * ** * ****** * *
* ** *** **** ***** *** **** * * * ** **
* ** * ** * *** ** **** * * **** *** * * ***** ** ** *** * ** * * ** *** * *** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
***** ** * *** ** ****** ***** *** *** **** * *** * * * ** * ** ***** * * *** * * = %.2f\n",x1);
* * * * * * ****** ** * ** ** * * * * * ** * * ** ** ** ** * ** * * = %.2f",x2);
**** *** ** **** * ** * * * **
* * * * * **** *** ** if(D==0)
* ** * ** * ******* * * *** ** * * **
*** ** * ** ** * ** **** * ** * * ** ** *** ** ** * ******** * **** * * * * **** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
** * * **** ** *** * * ** ** **** * ** ** ** * **** ** * * ** *** ** ** * = x2 = %.2f",x1);
* * * * * * *** * ** * * * * **
**** * ** **** ** * * ***
****** **** ** *** ** ** * * * * *** ** **
* * **** * **** *** * **** * **** * **** ** *** *** ** *** ** **** * ** ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
* *** * * ** * **** ***** ** * * *** * *** * **** *** ** * *** ** * * ** = *********** * ** ** * **
** * * ** *** * * ** *** *** *** * * * * * * * * ** **** *** * ** = ** * **** * * **** ** *
** ** ** * * * * * * ** ** * * ** * * ***
* * **** ** * * * **** * 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
** ** * * *** * ** * * a,b,c,x1,x2,D;
*** * **** * * **** * ***** * * ** * %f * * * * ** ***** **
* ** * * ** * *** * * * *** ***
******* * ** ** ** ** * = (-b + sqrt(D))/(2*a);
* * ** *** ** * * ** * = (-b - sqrt(D))/(2*a);
* **** ** * ** * ***** * **** *
** **** **** ***** * *** ** ** *** * **
*** ** * * * * * * *** ** *** * * * ** * ** ** ** * * *** * * *** * * of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
* *** * * ** ** * ** * * ** ** ** * * * * *** * * ** *** * *** * ** *** = %.2f\n",x1);
* * ***** * * * * * * * ** * ***** ** ** ** **** * ** * * * * * ** = %.2f",x2);
*** ** * ** *** ********* ** ** * ***** ** **
** ** ** * ****** ** *** * * if(D==0)
* ** ** ** * ** ** ** * ** * * * ** *
*** ** * * *** **** *** ****** * ** *** * * * * ** **** *** ** * * * of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
*** * * ** * ***** * * ** ***** * * *** * * **** * * * * * *** * *** = x2 = %.2f",x1);
* * * * ** * ** * ** * * * * * * ***** *** ** *
* ***** * * * * **********
* * *** * ** *** * ** ******** * ** * ** *
** ** * ** * ** *** * * *** * * *** *** ** * *** * * * * * ** * * of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
* * *** ** ** ** ** **** * **** ** * * **** *** ** * *** ***** ** ** = **** * * ** ** ** *
**** * ** **** * * ** * **** *** * * ********* * ** * * ***** * * * * **** ** * * = ** ** **** * * *** **
* * *** ***** ** * *** * * * * * ** *
*** *** ** * *** *** * ** *** ** 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
* * * * ** ***
*** ** *** * * **
int main()
{
* **** * * * * **** * ** * a,b,c,D = 0,x1 = 0,x2 = 0;
* ** * * * * ** ** **** * * * * ** **** * ** **

* * * ** **** ** ** * ** ** of %.2fx^2 + %.2fx +%.2f = 0 ** ****
*** * * ******** ** * = (b*b-4*a*c);
* * ** **** ***** *** **** (D < 0)
** * * ** ** ** *** *** * *
* * * *** * ** *** * * ** * * * complex and * ** * *
***** * ** **** ******* = * ** * ***** ** * ** * ****
*** ** ** * **** * * * * **** = ** ** * *** *** * * * ***
** *** * **** * *******
***** ** ** ** **** * * (D > 0)
*** ** * * * ******
** ****** ***** * ** ***** * * real and *** ** * *
** ****** **** * * * * * * ** = * ** + sqrt(D))/(2*a));
* ** ** * **** *** * * * **** * = %.2f",(-b - sqrt(D))/(2*a));
* * ********* * * * * *
** * * * * * * * (D == 0)
* ** * ** * *** * *
*** ** * ** *** ** ** * *** ** real and same\n");
***** * ** * ***** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** * **** * * * * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* * ** * * * ****
* *** * * ** **
int main()
{
** * * * *** * * * *** a,b,c,D = 0,x1 = 0,x2 = 0;
* ** * * *** **** * *** * * ** ** * *** * * * *

*** * ** ***** *** * ** **** * of %.2fx^2 + %.2fx +%.2f = 0 * ** ** *
* * ***** **** * * ** = (b*b-4*a*c);
* **** *** * ** ** (D < 0)
*** * ** * **** ** * *
* **** ****** * * * complex and * ***
*** ** ** *** *** **** ** **** ** = ** * * ** *** * **
** * * ** ** ** * * * * = ** * * * ** *** *
* ** *** * ** *** * *
* ** * * * ** * ** (D > 0)
* ** **** * * *** * *
** *** * ** **** ** * ****** ** * real and * ** ** * *
*** * * ***** * * * * ** * ** = * * *** * + sqrt(D))/(2*a));
** *** *** * * ** * * * *** **** = %.2f",(-b - sqrt(D))/(2*a));
* * ***** * * **
* *** ** ****** * (D == 0)
* * ******* ** * *
* *** * ** *** * ******* * * * real and same\n");
***** * * *** ** ** * **** ** * ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
** * ******* * ****
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* ** *****
** * **** * *
int main()
{
*** ******* * **** ***** ** a,b,c,D = 0,x1 = 0,x2 = 0;
**** * ** * * * * * ** * ** ** **** * * ** * *** *

***** **** * ** ****** ** ***** **** of %.2fx^2 + %.2fx +%.2f = 0 *** * ****
* **** **** ** ** * ** ** = (b*b-4*a*c);
** * * * * ** ***** (D < 0)
*** ** ** ** ****** ***
** ** ***** *** *** **** **** * complex and * *** * ** *
*** **** ***** *** **** * ** ** * * * = *** * * ****** ** ** * *** *
** **** * * * * * * *** *** ** * = ** ** * * * ** ** *
* **** * **** *
* * **** ** ** *** ** * ** (D > 0)
** * * * * ** * ***
* ***** * ** *** * *** **** ** * real and * * * * ****
**** ** * ** * ** **** * * * * = *** ** **** + sqrt(D))/(2*a));
* ** * * ** * * **** * ***** = %.2f",(-b - sqrt(D))/(2*a));
** * *** * * *** *
* ** * * ** * * * ** (D == 0)
** ** *** * * **
*** ** * * ** * * **** * * * * real and same\r\n");
*** *** * * * ** * *** ** ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
**** * ***** *****
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
*** *** ********
** ** *** ** * ***
int main()
{
* ** * * * *** * * * *** a,b,c,D = 0,x1 = 0,x2 = 0;
** ** * *** * *** ** ** * *** *** * *** ** * ** * ****

* ** ***** *** ** * * * of %.2fx^2 + %.2fx +%.2f = 0 ** ** * **
* ** * * ** * ** ** = (b*b-4*a*c);
* **** * ** ** * * * (D < 0)
* * * * * *** ** * *
* ** **** * *** ** ** *** *** *** * complex and ** ** ***** * *
* ** ** * * ******* ** * * * ****** = ***** *** * ** ** ***** * **
* ** * **** * ** ** * * ** * = ** ** **** *********
* ***** * * * ** * **
**** ****** * * * * ** (D > 0)
* * * *** *** * **
**** * * *** * * ** * *** real and ** ** **** * ***
** *** *** * ** * *** * * * = * ** * * + sqrt(D))/(2*a));
* * * **** ** * *** *** ** * * * = %.2f",(-b - sqrt(D))/(2*a));
* ** * * * * ** *
* * *** * * *** ** * (D == 0)
****** **** * * *
** **** *** * **** * ** ** * *** * real and same\r\n");
** * * *** * *** * **** ** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* ** * * *** ** * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* * **** ** **
** * ** ** ** * *
int main()
{
* **** * * * * *** ***** a,b,c,D = 0,x1 = 0,x2 = 0;
* ** *** **** *** * * *** * * * ** ** * * * * ** *

* * * * *** * ******* * ** of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
** **** * * *** ***** *** = (b*b-4*a*c);
* *** * * *** ** *** * = (-b + sqrt(D))/(2*a);
** *** * ** * *** = (-b - sqrt(D))/(2*a);
* **** * ** **** * ** (D < 0)
** * * * * *
*** * * * * ** *** *** ** complex and * * * *** * * * *
** **** **** * ** *** ** * ** ****** = * **** ** *** ** ** *** * * *
* * * * * * *** ** *** ** *** * = * ** ******* ** *
******* * * * *** *
***** ********** ** *** (D > 0)
** * * * * * * *** * * ***
** *** * * ***** ***** * * * * * *** real and ** * *** * * *
** * **** * **** * * **** ***** *** = ******* *** *
** ** * ** ** **** ** ** ** * * ** = %.2f",x2);
** * * ********** **
* ** ** * * * ** * (D == 0)
**** * * ** * ** *
* * * * * *** **** * ** real and same\r\n");
* **** *** * ** ** * * ** = x2 = %.2f",x1);
* ***** * ** * * * ** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.6.77
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users