0 like 1 dislike
13.8k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 13.8k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
***** * *****
** * ** **

int main() {
** * ** * * * * ** * * * *
*** * ***** *** ** * * * **** **** %f ** ** * &a, &b, * * *
** * *** * * ** ** ***** * ** *
* ** ** ** * ** **** * ** {
** * ***** **** ** *** * ** ** * * * *** ** ** ** ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * ** * ** = ** * *** * = ** ** ** a, b, c, (-b)/(2*a), * * (-b)/(2*a), ***** ******
* *** ** * * *** * * **
** ** * * *** * ** * * if(d==0) {
* * * * ** ** * ** ** * * * * * ** * ** ** **** ** *
* * ** ** **** * * * *** * *** ** ** * * * ** * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * * a, b, c, x1);
* ** * * ** * ** ** **** *
* * * **** * **** ** ****** *** ** {
* * *** ** *** ***** ** * * ** *** * ** * **********
*** * * * ** ** * * * * * * ***** ** * * ***
* * *** * * ******* * ** * ** ** * * ******* of %.2fx^2 + %.2fx + %.2f = 0 are real and ** = %.2f\nx2 = ** * * * a, b, c, x1, x2);
* * * * * * * ** * **
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * * * * ***
* * * ** * **** * ** *
#include ** * * *

int main()
{
** * ********** ** * ** * ** * *
* **** * * ** * * *** ** * ** %f ** **** ********* **** * * *
* ** * * * ** * * **
**** * * * * * *** *** ** ** * **
*** * * * *** **** *
**** * * ** ****** * * ****
*** ***** * *** * * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * * *** * = %.2f\nx2 = ** ****** **** ****
*** ** * * * * ** * * if(D==0)
* **** ** *** ** * * * * * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = *** *** ** * **
** *** * ** ** * *** ***
* ** ** * **** **** *** ** ** ** * *** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * **** * = * * ** = ** * **** ** * *** * * * *
* **** **** * ** * *** *** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * *
* ***** *** ** * * ***
** * ** ** * **

int main()
{
*** * * * * ** *** ****** ** * * **
***** ** * ** * * * **** *** %f * ****** ******* ** ** *
* * * ** * *** *** ****** ***
* * * ** **** * * * * ** *** ***
* * * *** * ** ** * ****
* ****** * ** ** * * **
* ** ***** * *** ** ***** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * ** = %.2f\nx2 = * * * ** **
* * * * * ** * * * * ***
** ** ** ** * * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * * * * ***
** * ** * * **** *
* * ****** * * * ******* * ** * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * *** * = %.2f + ** ** = %.2f - * * ** ** ****** * ***** ** *
* *** ** * *** * ** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* *** * * * ** * * ** * a,b,c,x1,x2,D;
* * ** ** ****** ** ********* * * ** ** %f ** ** * ** * * **
*** *** ** * * * * ****
* * * ** * * * * * *** = (-b + sqrt(D))/(2*a);
*** * *** * *** * * * = (-b - sqrt(D))/(2*a);
**** * * ** ** ** ** * * *
*** * ** **** ** * *** * * ** ** **** **
* * ** * * ****** * * * * ** * * * * * * * ******* ** ** ** *** * *** of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
****** ** ** * ******* * * ** * * * *** ** ** *** *** * * * * ****** * ******* = %.2f\n",x1);
** * ** *** ** * *** * **** * * * **** * * ** * * ** * * * ** * *** ** = %.2f",x2);
* * ** * ** * * * * * ** * ** **
* ** * * * * * if(D==0)
**** * * * * ***** **** * * * * * * * **
* * * ** * ** * * ******* ** **** ** * * *** * * ****** *** * * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
* * **** * ***** ** * * **** *** * ****** * ****** * * ** * * * ** *** *** = x2 = %.2f",x1);
** ********* ** *** ***** ** ***** ** * * ** ***
*** *** ****** * **** * ***
** *** *** * ** *** * * *** **** * ** **
***** ** * * *** * * * * ** * ** * ** * * * * ** * ** * ** * ** **** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
* * * * * * ** * ***** * ** ****** *** * * ** * ***** * * * * ******** ** = ** ********** * ** *
* * *** **** ** *** * ** * * ** * * ***** * **** ***** * * ** *** ** * * ** * * = * * ***** * * * **** **
* * ** * * * ** *** * *** ** ** **** **** *** *
** * * ** *** *** * 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
**** * ** **** ** * * a,b,c,x1,x2,D;
********** ** * * * ** ** **** * %f ***** * * * * * * * *
***** * ** ** *** * *** ** *
*** * ******** * * = (-b + sqrt(D))/(2*a);
** * *** * *** * = (-b - sqrt(D))/(2*a);
****** ***** *** * * *** * ** * ** *****
* * *** ** * **** * ** * ** * ****
* ** * ** * * ** * * * ** * * **** **** * * *** * *** * *** *** * * ** *** of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
** **** ** * ** * *** *** * ***** ***** * **** ** * ***** * * ******** ***** = %.2f\n",x1);
** *** * ** **** * * ** *** * ** ****** * * *** * ** * ********** ** ** * **** = %.2f",x2);
** ****** * ****** *** * ***** * *
*** **** ** * * ** * * **** if(D==0)
* * * *** * * *** *** ** * ** *** * **
*** * * * ***** ** **** **** * *** * * ***** * *** **** * * * ** * of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
*** * *** ** **** ******** * * * * ****** ******* *** * ** * * * *** * ** ** **** = x2 = %.2f",x1);
* *** ** * * ** ***** ***** * * * *
* * ****** * ** * * ** ****
***** * * ** * * * ******** **** ***
***** *** **** * * * ** * ** * * * * **** ** * ******** ** *** ** ** ** * ** *** of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
** * **** * * ********* * * * ** ***** ** **** *** * **** **** ** * = * * * ** * **** *** ** *
* * *** * * * *** **** * * * ** * ** * * ** * * * * ***** *** * ** = ** * **** *** * ***** * * *
**** *** ** ** *** ** ********** ** * * ** * * *
* *** ** ** * * ** * 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
** *** * *** *
** *** *** * *
int main()
{
** * ** * ** ** * * a,b,c,D = 0,x1 = 0,x2 = 0;
** * * ** **** * * * ** *** ** * * * * * *

** * * *** * ** ** * * **** * * of %.2fx^2 + %.2fx +%.2f = 0 ** ** * * *
** * *** * *** ******* = (b*b-4*a*c);
* * ** * * * ** ** ** *** * * (D < 0)
* * ***** *** * *
* * * * * ** * * * * * complex and ** *** ***
* ** **** * * ** ** **** = * *** **** * ** * ***
*** * * * *** * * *** = * ** ** * * * ****
* ** **** * ***** ***
* * **** *** *** * (D > 0)
***** ** *** * ** * **
* * * * * ** * ** ** * * *** ** real and * * ** ** ****
** * ** *** * *** * **** ** = * ** * *** * ** + sqrt(D))/(2*a));
****** * * ******* * *** ** * * ** * = %.2f",(-b - sqrt(D))/(2*a));
* *** * * ** * * ** *
** ****** ** * ** *** * (D == 0)
*** *** **** * ** ** *
* ** * * ** * ** * * * real and same\n");
* ** ** * * *** *** ****** **** = x2 = %.2f",(-b + sqrt(D))/(2*a));
** * * * ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* *** *** ** *
**** ** ** **** **
int main()
{
*** ***** **** * ** *** a,b,c,D = 0,x1 = 0,x2 = 0;
** * * *** * * * * * * * ** ***** * * ***** * *

* * * **** * **** ****** * * * * ***** of %.2fx^2 + %.2fx +%.2f = 0 * * * ** * *
** * * * ** **** * * = (b*b-4*a*c);
** *** ** ** **** (D < 0)
* * * *** ** ***
*** ***** ** ** * * *** *** * complex and ** * * * **
* ** *** *** * ** ***** ** = * **** * *** ****** **** * **
*** *** **** * ****** * * * = * ** * ** ** ** ***** **
****** **** * *** ** **** ***
*** ****** * ** * **** * (D > 0)
* * ** * * * ****
* * **** * ****** * * *** * * ** real and ** * * ** ***
** *** * ** * ** ** ** ** ** * ** = ** * ** * * + sqrt(D))/(2*a));
* ** *** * ** ** **** * * * * * * = %.2f",(-b - sqrt(D))/(2*a));
*** * ***** * ******** ** *
* ** * ** *** **** ** ** (D == 0)
*** ** ** ****** * ** *
* **** ** *** ** * * ****** ** * real and same\n");
** * * ***** * *** *** ****** = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** ** **** ** * **** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
*** * * * *
* **** ** ** ** ** *
int main()
{
* ** * * * ** * a,b,c,D = 0,x1 = 0,x2 = 0;
* **** * * ***** **** * *** *** * * * *** ** *** * **

* * * ** ** ** * ** * ******* of %.2fx^2 + %.2fx +%.2f = 0 * * ***
** ***** ** ****** ** * = (b*b-4*a*c);
**** ***** * * * (D < 0)
* * *** *** **
**** *** *** *** * ** * ** complex and * ** * *
* * ** ******** *** * * ** = * *** ***** * * * **
** ** * ****** * * * ***** * = ***** *** * * * * *
* * * **** **** * * * **
*** *** * * *** (D > 0)
* * * * * **** ***** ** **
* ** ***** *** ** **** ** * real and ** * * **** * **
** * * *** *** ** **** * *** = *** **** + sqrt(D))/(2*a));
* * ** **** ** **** *** *** = %.2f",(-b - sqrt(D))/(2*a));
*** * *** ***** ** ** *
* * ** ** * ***** **** ** (D == 0)
* ** * * ** ** * *
* * ***** * * ***** ** * * * real and same\r\n");
** * * * *** ** *** * * ** * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * ***** * * * * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* * *
* * * *** * ***
int main()
{
* * ** * * * * *** * a,b,c,D = 0,x1 = 0,x2 = 0;
*** ** ** * ** * *** * * ** ** * ** ******* **** * * * ** **** *

*** **** ** * ** *** * ** * * of %.2fx^2 + %.2fx +%.2f = 0 * **** * * *
** *** * * * **** = (b*b-4*a*c);
** * * * * ****** (D < 0)
**** ******* ** **
** * * **** *** * * *** * **** ** * complex and * * *
*** *** * *** * ** **** *** ** = ** *** ******* ** * **
*** ** * ** * * **** * * ** * * * = ** ********* * *** ** * * *
** *** *** ** ** ***
****** * * **** ** * * (D > 0)
** ** * * *** * *******
*** * * * * * * ** * ** * * real and * ****** *** **
**** *** * ** ***** ** * ***** * ****** = **** * ** + sqrt(D))/(2*a));
*** ** * ** ** * ** ** ** * ** * = %.2f",(-b - sqrt(D))/(2*a));
*** ** ** * *** * * ** *
* ** ************ ***** (D == 0)
* * ** *** * * *** * * *
* * * * ** * * * * **** **** real and same\r\n");
* *** * ** ** ** * * ****** * *** = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** **** ** * * **** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* ** ** *** *****
* **** * * ** *
int main()
{
* ***** *** * ** ** ** ** * a,b,c,D = 0,x1 = 0,x2 = 0;
*** ******* * * * *** * * * *** ** * ** * * * * * ** ** * *

* ** * * * * **** ** ***** * ** ***** of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
*** *** * ** * * ** = (b*b-4*a*c);
* * ***** *** * * *** = (-b + sqrt(D))/(2*a);
* ***** ** * *** = (-b - sqrt(D))/(2*a);
* * ***** * *** * * (D < 0)
** * ***** * ** * **
*** * ** *** ** * ***** ** ** * * * complex and * * ***** * * *
* * *** * * *** * * * ** = * * * * ** ** * * * **** *** *
**** * *** * * * * * **** ** **** = ** ** * * * ** **** * ** *
* * **** ****** * *
* * ** *** *** * * (D > 0)
** * **** * **** *
** * * ** *** ** ** ** *** real and * * ** **
* * *** ** *** *** *** * * *** = *** ** ****
** * * ** * *** * * **** * = %.2f",x2);
* *** * *** ** ** **
* * ** * * * * * *** * (D == 0)
** ** ** ** * ** ****
*** * ** ** **** *** ** *** * * real and same\r\n");
** * ** * * ** * * * * ** * = x2 = %.2f",x1);
* *** *** * ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.80.193
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users