0 like 1 dislike
6.7k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 6.7k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
* ** * **** *
** ** * * * ****

int main() {
* * * * * ** *** * * * ** ** * *
*** *** * * *** * * * * ******** * %f *** &a, &b, **
* * * * * * * *** * * **
*** ** * * *** ***** ** ****** {
* *** ** ** ** * * ** ** *** *** * * ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and **** * = * * = * ** ** * * a, b, c, (-b)/(2*a), * ** ** * (-b)/(2*a), ** * ****
* * * ** ***** * * ** **
** ** ** * ** * ** * * if(d==0) {
* * ** * * * * * * ** ** ** *** * * ** * *
* * * * * **** * ** *** * * ** ** ** * * * *** * * **** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * *** ** * a, b, c, x1);
** *** ** * * * **** * *
* **** ** * * ** * * ***** *** {
** ** *** * ***** *** * * * * * *** * * * * *** * ** **
*** * * *** * * * ** * * * *** ****** *** **** ****
*** * ** ** *** * * * * ** * ** ** ** * ** ** * **** of %.2fx^2 + %.2fx + %.2f = 0 are real and * *** = %.2f\nx2 = * ** * * a, b, c, x1, x2);
* * ** * * * * * ***
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ** **** *** *
*** * * * *** * *
#include *** ** ** ***

int main()
{
** ** * ** * * *** ** * * **
* * ** * *** *** **** * * * %f * * * ** * * ** *
** *** ** * *** ******** * *
* * * * ** * *** * * * * * *
* ** **** * ***** * * **** *
** ** ** * * **** ** *** *** **
** *** *** * ** ** * * *** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and ** ** * = %.2f\nx2 = ****** ** ** **
* * * ****** *** * * ** if(D==0)
* * * * * ** **** * * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ****** *** * *
* * * *** ***** ** * *
*** ** * *** * * * **** * ** *** ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * = ***** *** = * * * ** * * **** * ** * **** *
*** * * ** * ** **** ** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ** *
* ** * ** ****
** * * * *** *

int main()
{
*** * * * ****** * ** ** ** *
* *** *** * * ** ** * * * ** %f *** *** ** * ** * * *** *
* ** * * ** ******* *** **** **
* ** * *** *** ** ** ***** * * *
* * *** * *** * ** ** * * **
** *** *** ***** ** ** * * * *
* ** ** * ** * ** *** ** * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * * = %.2f\nx2 = ** ** **** *
* * * * ** ** * ***** ****
* * ***** ** ******** *** * **** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * *****
***** * **** * *** ** *
** * ** ** ***** * * ** * ** ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * * = %.2f + * = %.2f - * *** ***** * ** * * * **** * * *** *
* * **** * *** * * * ****** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
*** * * * ** * ** ** * a,b,c,x1,x2,D;
** * * ** * * * *** *** %f * ******** * *** ***
* *** * * **** * ** * *****
* * *** * ** *** * = (-b + sqrt(D))/(2*a);
* * * **** ** * * * ***** * = (-b - sqrt(D))/(2*a);
** * *** **** * ** * **
** * * ** *** * * * * * * * **
** **** ** * * *** * ** * * * * * ***** ** * * ******* * * * *** * ** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* ** * **** *** * *** * *** **** ** * *** * ******* ** ** ** ******* ** = %.2f\n",x1);
*** ** * ***** * ** ****** * *** ** **** * *** ** ** **** * ** * **** = %.2f",x2);
** *** ** * * ** * * * * ** **** ** *
** ** *** ***** * * *** if(D==0)
*** * ** *** * ***** **** ** * * * ** * * *
** **** * ** ** ** * * ** * * ** * * ** * * * ** **** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
* ** * * * * * * * * ***** ** * * ** * *** *** * *** ************ * * = x2 = %.2f",x1);
**** * * ** * ***** ** * * * ** * **** * *
* * * * *** ** ** ** *
* * **** ** *** ** **** *** ** * * * **
* *** * * ***** *** * * ** ** * * *** ** *** ** * * ** ***** of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
**** **** * * ** * *** * * * ** ** ** **** *** * * * *** ** * * ****** * = ** ** * ****** ** * * *
* *** * **** * ** *** *** ****** ** ** * * * * ** **** *** * *** *** * ** * = * * ** *** ** * *
** ** ** ** ** * *** * ** ** * ** ** * **
**** * * * ** * *** * 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* ** **** ** ** * * * a,b,c,x1,x2,D;
* *** ** * *** *** * * ** * * %f * ** ** * * * * ****
* * * * ** * * * ** *** *
* ** * *** ** ** ****** *** = (-b + sqrt(D))/(2*a);
** * ** * ** ** ** * = (-b - sqrt(D))/(2*a);
*** * * * * ** * ******** **
* ** **** *** ** *** * * * * ** *** * *** **
*** * * ** * * * * * *** * **** * ****** * * * * * *** ******** ** ** ****** * of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
* * * * **** * * * * * * ** **** ** * ***** ** ** *** * **** * * = %.2f\n",x1);
*** **** ** ** * ***** * **** ******* ** * ** ** ** * * = %.2f",x2);
* * * * **** * ** **** * ** ** *** * * * ** *
* * * * ** * *** * ** * ** if(D==0)
* *** * **** * * **** ** * * ** ** *
* **** **** ***** * * ***** * *** *** * ***** * *** * ** * * **** * ** ** of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
* ** ** ** *** ******* ** *** * ** * ****** * ** * * **** * * *** * * ***** * ** = x2 = %.2f",x1);
* ***** **** * *** * ***** *** * *** *** ****
**** * * * * * * *** ****
** ** *** * ******** ** ** ** * * * * * ** **
* * * ***** * * *** * ****** ** **** * * *** *** ** ** **** ** ** * ** * * * * * of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
* * * * * ** *** **** * * * ** ***** ** ** * * ** * * * * * * ** * ** * * = * ****** * ** * ****** *
* * *** *** * ** * *** * * * * * *** ** *** * **** * ** * *** ** = ** ****** ** *******
** *** * * * * * **** * * *** * * * * * * ***
* * * * ** *** ** * 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
** * ** ****
* * ****** ***
int main()
{
* ****** ** *** ** * a,b,c,D = 0,x1 = 0,x2 = 0;
** *** * *** *** * *** ** * ** ** ** * *** ** ******* *** * *

* ** ** * * * *** ** * * ** * ** of %.2fx^2 + %.2fx +%.2f = 0 * ** * *
*** *** ** *** * * = (b*b-4*a*c);
*** * * *** *** * (D < 0)
* ** * *** ** * * *** ****
*** * ** **** **** * *** complex and *** * * ** *
**** * * * * * ** ** * = ** ***** ***** * * * ** * *
*** ** ** * * ** * ** *** * = * ** **** * * ** * * * ** *
** ** * * * **
* * * * **** ** * **** (D > 0)
** * ** * * *** **
* * * * * * * ** * * ** *** * ** real and * * * ** * **
** ** ** ***** * * ** ** ** = * * * ***** + sqrt(D))/(2*a));
******* * * ***** **** * ** * = %.2f",(-b - sqrt(D))/(2*a));
* * * * *** * *** *
* ** * ** *** * * ** *** * (D == 0)
* ** * * * **** * *
* * **** * * ** ** *** *** *** real and same\n");
**** * * * *** * ***** **** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * *** * * * ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* * * * ** ** * * **
*** * * **** ** *
int main()
{
**** ** *** ** * **** a,b,c,D = 0,x1 = 0,x2 = 0;
* * ** * * ** ** * * ** * ** * ** * * *** ** ** **

* * * ***** ** ** ***** ***** ** * of %.2fx^2 + %.2fx +%.2f = 0 * ** * * *
*** **** ** *** * ** ** = (b*b-4*a*c);
* * * ** ** *** * ** (D < 0)
** ***** *** ** * * * **
* ** *** ** * *** * *** ****** complex and ** ************ *
***** * * *** * * ** ***** ** ** = *** ** * *** * * * **
* *** ** * * * * ** ** * ** *** * = * **** ***** ** * **** *
** ***** ****** *** *
* * * ** * ** * * (D > 0)
*** * * ********** * * *
* * * * * *** **** ** * ******** * * real and * * **** ***
***** * * ** ** **** ****** = * *** * ** + sqrt(D))/(2*a));
***** *** *** **** * * * * ** ** = %.2f",(-b - sqrt(D))/(2*a));
***** * * * * * * * * ** **
** * * **** ** * *** * (D == 0)
* * ** * * * **** ** *** *
*** *** *** * * ** **** real and same\n");
* *** ** ** ** * * * * * * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
***** * * ** *** *** * **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** ** * *
** ***** * ** ** ** ***
int main()
{
*** *** * **** * * * *** a,b,c,D = 0,x1 = 0,x2 = 0;
* ** * * * **** * * *** ** * * * **** * * * * *

** ** *** * * * *** ** * * * of %.2fx^2 + %.2fx +%.2f = 0 * * * *
* * *** *** ** = (b*b-4*a*c);
** ** * * * **** * ** *** ** (D < 0)
** * *** ** *** ** *
***** * * * * * * ***** * * *** complex and * * ** ** *
** * * * * *** * * *** * **** * * = * * * ** ** ** **** ** ** *
* * * * *** ** ** ** * = * ** *** * ** * ***
** ***** * *** * ** ****
* *** ** *** ** *** * * (D > 0)
** * **** ** * * * ** *
******* ** * * ** *** *** * ** ***** real and * * ** * * *
* * * *** *** * ** * ****** * ** = ** ***** * *** + sqrt(D))/(2*a));
* * * * ** ** * * ****** * ** = %.2f",(-b - sqrt(D))/(2*a));
* * **** *** ** *
*** * ** *** *** *** * (D == 0)
* *** ** *** * * ** * ****
** * * ** * * * * ***** * ** *** real and same\r\n");
* *** * ** *** ** ** *** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * * *** ** * * * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** ****** **
** *** ** *** *
int main()
{
*** * * * ** * * * ** ** * a,b,c,D = 0,x1 = 0,x2 = 0;
*** *** *** *** * ***** * ** *** * * * * * ** * * **

* * * * * *** * * ** * * ** * of %.2fx^2 + %.2fx +%.2f = 0 *** **** * ***
** * * **** * *** ** = (b*b-4*a*c);
** * * *** ** * (D < 0)
* * ** * * * *** * * * *
* *** ** * * * * ** *** complex and * * * * ***
*** * ** *** ** * ** ** ** * = *** * *** ** * ** ** * ****
* ** *** * * * ** * ** ** ****** = * *** * * ** **** ** * * *
* * *** ** ****
* * *** *** * *** * (D > 0)
** * * * * * * *
*** * ** * **** *** ** * * real and * * * * ** *
** * * ** ** * * * * * ** * * * = * * ** * + sqrt(D))/(2*a));
* **** ***** * ** * ** *** ** = %.2f",(-b - sqrt(D))/(2*a));
* ** *** * ** ** * * *
* * ** ** * * *** ** *** (D == 0)
* *** *** * * *
***** *** * ** *** * ** *** * * real and same\r\n");
* ****** **** *** * ** ** ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** ** *** * *** * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
***** ** * * *
*** ** * *** ** ***
int main()
{
** **** * ** ** ** * **** a,b,c,D = 0,x1 = 0,x2 = 0;
*** ** ** ** ** ** * * ** * * * * ** *** * *

* * * * ** ** * ******* of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
** * ** *** * ** = (b*b-4*a*c);
* * ** * **** * **** **** = (-b + sqrt(D))/(2*a);
* *** * * ** **** *** *** ** = (-b - sqrt(D))/(2*a);
* ******** ** ** * (D < 0)
** * * * ** * * *
* * * * ** ** * * * * ** * * * complex and *** ** ** * *
***** *** * * ** ** * ** * = ** ** * * * ** * * *** ** **
** ** * *** ** **** ** **** * * *** ** = *** * * * *** **** **
* **** ** *** * * *
* **** ***** * *** ** (D > 0)
*** * *** ** * ** * * *
* * ***** ** * ** ** * real and * * * * * **
* ** * * * * * * ***** ** = * ****** *
** * *** * ** * *** * *** * ** *** = %.2f",x2);
** * * ***** ** ** *
**** **** * *** ***** ***** * (D == 0)
*** * * * * * ** ** * * *
** * **** * * * * ** *** * * * real and same\r\n");
*** * ** * * ** * * *** * ** = x2 = %.2f",x1);
* * * *** ** ** * **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.6.236
©2016-2025

No related questions found

12,783 questions
183,443 answers
172,219 comments
4,824 users