0 like 1 dislike
8.6k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 8.6k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
* * *** * *** *
* * ** *** ** *

int main() {
* ***** **** * * ** * * * * *
* * * ** * *** * ***** ** ** *** ** %f **** ** &a, &b, * * *
** ** ** *** * * * * * *******
* ** *** ** * * *** **** {
* * ** * **** * * ** *** * * **** * * ** ** * * ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * = * * = *** * * * a, b, c, (-b)/(2*a), ** * * * (-b)/(2*a), **** *
* ** * * * * * **
* ** * **** * * * * ** if(d==0) {
* *** *** *** * *** * * ** ** ** ** ***** ** ** * ** *** * **
* ** * *** *** **** * * * ** *** *** * * ** **** **** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ** a, b, c, x1);
*** ** * * *** * * *
**** *** * * * ** ** * * **** * * {
* ** * *** * * *** * ******* ** ***** ** *** * ** ** * **
* ** * ***** * ***** * * *** * * ** * * * *** ** *** *** *
* ** ** ** * * **** * ***** * * * ***** * ** **** * ****** of %.2fx^2 + %.2fx + %.2f = 0 are real and ** * = %.2f\nx2 = ***** ** * a, b, c, x1, x2);
**** * ** * * ** * ***
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include *** **** * **
** *** ** ** ** **
#include * ***** ** *

int main()
{
** ** ** *** * * *** ** *
* * * ** * * ** * * ** ** * %f * ** * * *** * *** * * *
** ** * **** ***** * ***
* * * ***** * * * * *** ***
* * * * **** *** *** * * * *** *
* ******* * * * ** * ** ***
* * * ** * ***** ** **** * of %.2fx^2 + %.2fx + %.2f = 0 are real and * *** = %.2f\nx2 = * * * *** * * * ** *
**** ** ** ** * **** * ** ** if(D==0)
** **** *** ***** * * **** * * * * *** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * ** *
*** * ** ** * ** ***
* ** * ** ** * ** ** * * * * * **** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * ** = * = * ** * * *** ** ***** ** * * ** * * ***
* ** * * ** **** ** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ****** ** *
* * * * * *
* *** ** * ** *

int main()
{
* ** ** *** **** **** **** ** **
* * * ** * * ** ** ** ** ** *** %f * ** *** ** * * ** * **
** ** * ****** * ** * ** *
* *** ** **** ***** *** ****
* ** * *** ** * *** * * **
**** **** ******** * ** ****
* *** **** ** ** ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and **** *** * = %.2f\nx2 = ** ** * *
* **** * * * ***** * * ** **
* * ** *** * ** * ** *** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ** * ******
* * *** ** **** * *** *** *
* ** * * *** * ********* ** ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and *** *** * = %.2f + ** ** = %.2f - ** ************ ** ***** **** **** **
** ********* * * * * ** * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* * **** *** ** * a,b,c,x1,x2,D;
*** * * * * *** ** * * ****** ** %f ** * *** * * * * * * *
* ** * ***** * ** **** ***** * * *
* ** ** * ** * * = (-b + sqrt(D))/(2*a);
* ***** * ** ** * = (-b - sqrt(D))/(2*a);
**** * **** * *** * ** **
*** * *** ** *** * * * ** * * ***** ** * * * *
* * * *** * * * ** * ** * * ******** * ** ***** ** * * * * * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
** * ** * ** * * * * * * *** * * * ***** * * ***** *** ** * * *** * = %.2f\n",x1);
** * ** *** * * **** ** * * ** ***** * ** ** * * ** * ************ *** = %.2f",x2);
** ** * * * * * *** * ** ** * ***
* * * *** * * * ****** if(D==0)
** ** ** ** * * * * * *** * ** *******
**** * ** * * *** * *** * * ** **** * *** *** * * *** * ****** * **** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
* ** * ** * **** * * * ** ** * ** ** * * ** ** * * * * * ** * ******** * = x2 = %.2f",x1);
**** * * **** * ** ***** ** ** *** * * * *****
** * * * ** * * *
* * ** * ** ** * * ** * *** * *
* * ** ** **** *** * **** ** * * *** ****** ** *** * * **** *** **** * ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
** * ** ** * **** * * ** * *** * * ******* *** ** * **** * * * ** = ** ******* * * * * * * ***
** * ** * ** * * * ** *** * ****** **** * ** * * * ****** ** * ** * * * * * = ** ** * **** * ** *
** * ** * * **** *** **** ** * *
* ** ***** * * * ** 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* * * * ** **** * a,b,c,x1,x2,D;
* * ***** *** * *** * * *** ** %f * * * * * * * ***
* * ** * ** * **** * ** * *** *
**** * * ** * *** = (-b + sqrt(D))/(2*a);
** *** * *** * * * * = (-b - sqrt(D))/(2*a);
** * * * * **** ** * ** **
* * * * * * ** ** * ** ***** * * ************* * ***
** * * * ** * *** ** * * **** ** * ** * *** **** ** * * ** * * * * ** ***** of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
* * * * ** * * * *** ******* **** *** * *** * * **** * * * ****** * ** = %.2f\n",x1);
** * * * ** * * **** ** * ***** ** * * * ** *** * ** **** * *** * ****** * * * * * = %.2f",x2);
* **** * * * * * **** ** *** *** ** ***** *****
* ** * *** * ** if(D==0)
* **** ** *** ** **** * * ******* ** ***
** * ** *** *** ** ** **** * ***** ** **** ** **** **** *** *** **** * **** * of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
** * * ** ** * **** * ** * ***** * ***** **** ** * *** * * *** ** ** *** * * ** = x2 = %.2f",x1);
* * ** * ************* * * *** * ** ** ** ** * ** *
** ** ** ** * * * * * *
*** ** * * ** **** ****** * * * * * ** **
* * ** ***** ** ***** * * **** * ******** *** * * *** * * * * * of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
* ** * * *** ** * * *** ** * * * *** * * ** * **** * ** * * * * *** * * = **** * ** * * * ** * * *
* * * **** * ** *** *** ***** * ** **** ** ****** * * * * * * ** ***** ***** = * * * * *** *** * *
**** * ***** * ** ** * ** ***** *
** ** * ** ** **** * 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
*** ***** ** ** ***
* * ** * **
int main()
{
* * * ** ***** * a,b,c,D = 0,x1 = 0,x2 = 0;
* * * * **** * * *** **** **** ** ** ** *** ***** ** * * *

* * * * * * *** * *** ** * of %.2fx^2 + %.2fx +%.2f = 0 * ** *** *
**** ** * * * ** = (b*b-4*a*c);
* * **** * ** ** **** ** (D < 0)
* * *** * * ** ** **
* * ** * * * * ** * ** *** ** complex and * * ** *
** ** * ** * **** * ***** = ** ** * ******** * * * **
* ** * * ** **** * * * ** ** ** = **** ** * * * ****
* ** * * **** * ** ** ** * * **
* ***** * * *** ** * (D > 0)
**** * * * * ** * * *
* * * ** * * **** * * ** **** ** real and * * * ***
* ** ** ** * * * * * ** * = * * * * + sqrt(D))/(2*a));
* ** ** * ** *** * **** ** ** ** ** * = %.2f",(-b - sqrt(D))/(2*a));
* * * * ***
***** * * * ***** * *** (D == 0)
** ** * * ** ** * * *
**** * ** ** * ** ** * real and same\n");
* * ** ** * * * ** ** ** *** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* ** * **** * ****** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* * * ** * *
** * * * * *
int main()
{
*** * * * **** * a,b,c,D = 0,x1 = 0,x2 = 0;
* *** * * * ** * **** ** * * * * * *** * * ***** ******** **

* ** ** ** **** * * *** ** * * * * of %.2fx^2 + %.2fx +%.2f = 0 *** ** * * *
* ***** **** ** ** ***** ** = (b*b-4*a*c);
** * ** * ** ***** * * (D < 0)
*** * ** ** * * * * *
* ****** * * *** * **** ***** ** * complex and ***** ***
*** * * *** * **** *** ** * * = ** *** * ** ***** ***
*** * * * * * * * * * * **** = *** *** * * * *** * **
* ** *** * * * * * ** *
* ***** * * **** *** (D > 0)
* * **** ******* *
* * * * * ******** * * * * * * real and ** **** *
* *** * *** * * * * * * ** * * ** = ** * * * * ** + sqrt(D))/(2*a));
*** ******* * ** ** ** * * * = %.2f",(-b - sqrt(D))/(2*a));
*** * * * * ** ** * * *
** *** ** * * * * * * (D == 0)
*** **** ** * ** * * *
* *** ** * * ** ** ** ******* **** real and same\n");
**** *** ******* ** * * * ** *** = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** ** * * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
**** * * * * * *
* * * * * * ***
int main()
{
* * * * * * ** ** a,b,c,D = 0,x1 = 0,x2 = 0;
** * ** * * ** ** * * * * ** ** *** ** ** ****** ** *** * * **

**** * ** * * ** ** ** ** ** * ** * of %.2fx^2 + %.2fx +%.2f = 0 ** ***
* * * * * * ** **** ** = (b*b-4*a*c);
******* * ** ** * ** ** (D < 0)
* ** ** * *****
********* * ** *** * ** * * * complex and * * * *** *
* *** * ** *********** * ** ** * = * *** * ** ** ** **
* * *** ** **** * ** * * ** * * = * * ** **** *** **
** ** ** ** *** ***
* * ** * ** * ** ***** (D > 0)
** * **** **** ** *
** ** ** * ** ** * * ** real and ** *** * * *
***** ** ** * * **** **** * * = * * * + sqrt(D))/(2*a));
* **** * **** *** ** **** ** **** = %.2f",(-b - sqrt(D))/(2*a));
* ** * **** ** ** ** *
** *** *** * ** ** * ** ** ** (D == 0)
* * ** **** * ***
** * * ** ** ************** ** * real and same\r\n");
* * ** * * **** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* ** ** *** *** * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* * * *** *** * *
* *** *
int main()
{
* * * * * ** *** *** ** a,b,c,D = 0,x1 = 0,x2 = 0;
**** ** ****** **** * ** * * ** * * * **** ** * *** ***** * ** * **

** ** ** * ** * * ** * ** * ** ** * * * of %.2fx^2 + %.2fx +%.2f = 0 * * **
* * * * * * * *** ** ** = (b*b-4*a*c);
***** *** * **** ** (D < 0)
* ** * *** * *** * * * *
***** * * *** **** ** * * * complex and * * * * * * *
** * * * * **** ** **** *** ** * = ***** * ** * * ****
* ****** * ** *** * * * ** *** = ** * * * ** * * **** *
** ** * ** **** *
* * * ** ** ** * ** * (D > 0)
* * * * * * ** * ** * **
* * * *** *** ** * * * *** real and ** ***** * * ***
* * * ** * * ** *** * ** ** ** ** = ** *** *** + sqrt(D))/(2*a));
* * ** *** *** *** * * = %.2f",(-b - sqrt(D))/(2*a));
********** * * ** * * *
**** ** * ** * ** * ** ** (D == 0)
* ** * ** **** * * *
* ** * * * * * ** ** * * * * *** real and same\r\n");
**** *** ** * *** * *** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * * ** * **** * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
**** ***** *
* ** * *** ** **
int main()
{
** * * ** * * ** ** * a,b,c,D = 0,x1 = 0,x2 = 0;
**** *** ******** * **** * * * * ** *** * * * ** * ** * * *

** ** ** ** ** ***** **** ***** of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
** *** ******* * * * *** = (b*b-4*a*c);
**** * * ** * * * * ** ** = (-b + sqrt(D))/(2*a);
* * * ** *** * *** = (-b - sqrt(D))/(2*a);
**** * * ******* ** (D < 0)
* * * *** ** * ** * *
* * *** * ** ** * * ** * **** complex and ** ** ** **
* *** * ** * ** * * *** *** = * **** * * * * * **
* * ** **** * ** * **** **** ** = ************* * *** * ** **
* ** * *** *** * ** *
*** * * *** * * *** *** ** (D > 0)
* **** ** * *** * *
*** ** ** **** * ** *** * real and * *** * ***
**** **** * **** *** **** * = * * * ***
* * ** ** * * **** ** * * *** = %.2f",x2);
* * * ***** ** *** *
** * *** * ** * * * * (D == 0)
* * ** * **
* * ** * * * **** ** ********* real and same\r\n");
** * * * * **** *** * ****** *** * = x2 = %.2f",x1);
* ****** ** ** * * * ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.17.116
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users