0 like 1 dislike
11.9k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 11.9k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
* * * ** * ** * * *
*** * ** * *** ***

int main() {
* *** * * * **** ** *** * **
* *** * * **** **** * * * * **** %f * * * * &a, &b, ***
* * * **** * ** * * ** *
*** ** ** ** * * ** ** * * **** * * * {
** ** ******* * * * * * * ** **** * ** *** * ** ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * *** = * * *** = * ** ** ** ***** a, b, c, (-b)/(2*a), * * * * * (-b)/(2*a), * *
** * ** * * * * **
** * *********** **** ***** if(d==0) {
* ** * *** * * *** ** * ** * ** * ***** * **** * ** ** *
* ******** * *** *** ** * * * ** ** *** * * * * * ** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * **** *** a, b, c, x1);
* ** * * * * *
* ** * *** * **** * * *** * * * *** {
** * * * ** * ** *** *** ***** * ** *********** **
** ** * ***** ***** * * ****** ** * * * * ** *** * *
*** * ** * *** ***** ** ** *** * ** * **** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and * * *** = %.2f\nx2 = **** * a, b, c, x1, x2);
*** **** * * **** ** *
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ** ** **** *
* ** ******* * * **
#include * ** * *

int main()
{
* * * **** * *** ** * * *** * ****
** ***** * * **** * * * * * %f * * ** * ** **** ** * ***
** ** ** ** * * * * ** *
* * ****** * * *** * * * *
** * *** * *** * * ** *** ***
*** ** * ** * *** * * ** *
* *** * * * **** **** * ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and * * * *** = %.2f\nx2 = ** **** *
* ****** **** * ****** if(D==0)
* * *** *** ****** ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = **** * ** * *
* *** ******* * ** *
** *** ** * * * ******* of %.2fx^2 + %.2fx + %.2f = 0 are complex and **** * = * * ** = * ** **** * * * * ** *** ** *
*** * ** *** ** ** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include **** ** *** **
** * * ** *** ** *
* * ** *** * ** * * ** *

int main()
{
** * ** ****** * * * **** * * * *
* * *** * * * * * * * * %f ** ** ** ** * * ** **
** *** ***** ** ** * * *
***** **** ** **** *** ****** ******
*** *** * ** * * * * ** * *** **
** ******** ** * * * ***
* ***** * ***** * * ** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and ** ** ** = %.2f\nx2 = ** * ** ** * *
* *** **** * ** **** * ** **
* ****** * *** ***** ** ****** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = *** **** *** ** *
****** * * * * ** ** **
* * * ** **** * * *** * ** * **** ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * **** = %.2f + * * = %.2f - ** *** * ** *** * * ** ** ** ** *** * *** *
* *** * * * ******** ** * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* * *** **** * ** ** **** a,b,c,x1,x2,D;
****** * * * * ** ** **** * %f * * *** * * * * ** ** ** **
** * ****** *** * * ** ** *
* * ** * ***** * *** = (-b + sqrt(D))/(2*a);
* *** ** ** **** * = (-b - sqrt(D))/(2*a);
* ** * ** * * ** * *
* * * * * * ** ** ** ** *** ** *** * *****
* *** ** ** *** ** ** ** * * * * ** * ** **** * **** * * *** ** * ** * * ** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* * * * * ** ***** *** * * * ** * * ** ** ** ** ** ** ** ** ** **** ** = %.2f\n",x1);
****** ****** * *** **** * ** ** * *** ** ** *** * ** **** * ** *** * ** * * *** = %.2f",x2);
**** **** * ** * *** * *** * * * * *** *****
*** * * * *** ** * * * if(D==0)
* * * * *** *** * *** ***** * * ** * **
* * ******** ** * *** * * **** *** ** * * *** ** ** *** *** * * * * ***** ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
** * *** ** **** * ** *** ***** * * * ** * ** * * ** * ***** ** * = x2 = %.2f",x1);
** ** * ***** ******* * * ***** * * ** * **
* ** ** ** * *
*** ****** * ******* **** *** * * *
* * * * * ********* * * * * * * ** * *** * **** * * **** ** * * ** ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
* * *** * * * * **** * ** ** ***** * * ** *** * * * * * ** = ***** ** * ** **
** * * * ** * ** * * *** ** * * ** * **** ** * * * **** * * * *** = * * * * ******
** **** * * ***** ** * ****** * ** *** * **
* * * ** * * ** *** ** * * 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
**** * * * *** ******* a,b,c,x1,x2,D;
** ** * ***** * ** * * * *** ** %f ** **** * * ** **** ** *
** *** * * * ****** **
* * ** * ** * * * = (-b + sqrt(D))/(2*a);
* * ** * **** * ** = (-b - sqrt(D))/(2*a);
***** * * * * ** * ** ****
* ***** * **** * **** * ***** * * ** *
* *** * *** ** * **** ***** * * *** * **** ** * * ** * ** * * * * *** * *** of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
* ** * * ** *** ** *** ** * ** * * *** ** ** **** * * *** * * ** * ** ** * * = %.2f\n",x1);
* * **** ***** * ** *** * * *** *** *** * ** * * *** * * *** * *** = %.2f",x2);
** ** ** ** ***** ***** *** *** ** ** * * *** *
** *** ** **** ** if(D==0)
* *** * * ** *** * *** * * *
**** * * *** ***** * * * ** * * * * ***** * * *** ** * * *** ** * ** * * * * of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
* * *** ** * * ** * *** *** *** ****** * **** ***** ** * ** *** **** * = x2 = %.2f",x1);
* ** *** * * ** * ** *** * ** * * * *** *
* * * * * * * * ** *** * * *
* **** * **** * * * * * ****** *** ** **
* * * * *** * * ** ** * **** * *** *** * *** **** * ** **** *** * * * of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
* ***** ** * ** ** * *** * **** *** * **** * ** * *** ** ** * ******* ** * = ** * * ** ** **** ** *
*** * ** * * * * * * *** * * *** * * **** * *** * = * *** * ** * ** ***
* * *** ** * *** * *** * *** * * ** ***
* **** *** *** ** * ** 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
****** * ** * *****
* ** * **
int main()
{
* ** *** ** * * a,b,c,D = 0,x1 = 0,x2 = 0;
*** **** ** * ** *** *** * ** * * ** * * * ** **** ** *

* ** ** * ******** ** ** *** ** * of %.2fx^2 + %.2fx +%.2f = 0 ** * *
* * * *** * *** = (b*b-4*a*c);
** * ** ** **** ** (D < 0)
* * * * * * ** *** * *
** ******* * * ** * ** *** * * complex and * * ** * * ** *
* ** * *** * *** * * * ** * = ** ** * * ** * ** *
** *** **** ** ** ****** ** **** ** **** = * * * * ** * * * *** **
* ** ** * * *** *
* ** * * *** * (D > 0)
* * ** **** * *** *** ***
** * **** * * * ** * ** real and *** ** *** *
* ** * ** ** * * * * *** *** ** = *** * * * + sqrt(D))/(2*a));
*** ****** *** * * ** * ***** ** *** * = %.2f",(-b - sqrt(D))/(2*a));
** ***** *** ** * **
* *** *** **** * *** * * (D == 0)
* * * ** ** ***** ** ** *** *
** * * ** *** * ***** * ** * *** real and same\n");
* ** ** * * * ** * * * ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * ** ** * * **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* * ** * *** * ** *
* **** ** *
int main()
{
* * * * * ** * * * a,b,c,D = 0,x1 = 0,x2 = 0;
** ** ** ** * * * ** ***** * *** ** ** *

** * * * *** * * ** * * * of %.2fx^2 + %.2fx +%.2f = 0 ** *** * ** *
** ** *** * * ** ** = (b*b-4*a*c);
* * *** **** ** **** (D < 0)
* * * * **** * **** * * *
** ** * **** ** * * * * complex and ***
*** *** * * * * ** * * **** = *** * * * * * * *** ***
* * *** * * ** * **** ** **** ****** ** * = ** *** * ******* ** ***
* * * ** * * * *
*** * ** * * * * * (D > 0)
** * ** * * * ***** *
** ** ** *** * * * * ** * * * real and ** ***
** ** * **** * ** ** ** ** = * * *** + sqrt(D))/(2*a));
** ** ** ** ** ** * * **** * * = %.2f",(-b - sqrt(D))/(2*a));
** ** * ** * * * * * ***
**** * ** * ** *** ***** (D == 0)
** * *** * ** * ** * *
**** *** ** * * * ** real and same\n");
* * ** ** * * ** *** ** *** ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** ** ** * ** * **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* *** *** * * * **
******* ***** * * ** *
int main()
{
* **** *** * ** * *** * * a,b,c,D = 0,x1 = 0,x2 = 0;
** * * * * ** * * * * ** *** * * * ** * **** ** ****** ** * *

* * * * ** * ** * ** ** of %.2fx^2 + %.2fx +%.2f = 0 ** **
* ** **** **** * * * * * * = (b*b-4*a*c);
* *** *** * *** ****** * * (D < 0)
* *** ** ** ** * ***
** * ** * ** * * * ****** ** complex and * ** ********
* * * * *** * ***** * * *** * = ** ** ** * * ** * *** *
** *** * * * ** ** * * * ** = * ** * * ** * **** ***
* ** ** * ** * *
* * * **** ** * ** * (D > 0)
* * * * * ** ** * * ** *
* * *** ** * ** * * ***** real and * *** * * * *
* ** * ** ** ** * * ** * = ** * + sqrt(D))/(2*a));
* * * * *** ********* * * * * * * *** = %.2f",(-b - sqrt(D))/(2*a));
**** * * * **** *
** * ** * ** * ** *** ** * (D == 0)
***** ***** * * * * * ***
* *** ***** **** * ** ** * * real and same\r\n");
* ****** ** * **** * ** ***** ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * * * ********* ** * **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** * ** * * *** *
** * ** *** ** *
int main()
{
**** *** * * * * * ** a,b,c,D = 0,x1 = 0,x2 = 0;
** * * ** * *** *** * * ** * ** * *** * **** *** * *** ** *

* ** * ** ** *** ** **** * * of %.2fx^2 + %.2fx +%.2f = 0 * * ****
**** * ** ** ****** ** ** = (b*b-4*a*c);
* ** * ** **** ** * (D < 0)
* ****** *** * * * **
***** ** *** * **** ** complex and *** **** ** *** *
* ** *** * **** * * ** * * * = ** * *** **** * * * ** ****
*** * ** * ****** ** * ** * ** *** = ** ** * *********** **
* * *** **** ** * * ****
* ** * ** * ** ** (D > 0)
* * **** * ** *
* * * ****** * * **** * ** real and *** **** ** * **
** * * * * ***** * *** ** ** = ** * *** + sqrt(D))/(2*a));
* ***** * *** **** **** ** * = %.2f",(-b - sqrt(D))/(2*a));
** **** ***** * * * ** *
** * ** * * * *** *** (D == 0)
* ** ** * * * ** * ***** * ***
** * ** * ** * * real and same\r\n");
* * * * * * * *** ****** ** ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
** * **** * * ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
*** ** * * * *** *
** * ******** **** *
int main()
{
* * * ** * * * * * *** a,b,c,D = 0,x1 = 0,x2 = 0;
* ** ** * ** **** ** * ** * ** * ******** * ** * ***

**** ** * *** ***** * * of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
*** * *** * * ** *** * = (b*b-4*a*c);
***** * * ** * *** * = (-b + sqrt(D))/(2*a);
* * * ** * * *** ** ** = (-b - sqrt(D))/(2*a);
** * ** ** *** * (D < 0)
*** * ** *** ** ** *** ** **
** *** ** * *** ** ** * ** * *** complex and ***** ** *** *
**** * ** ***** ** * *** *** * * *** = * * * ** *** ** ** **
** *** * * ** * * ** * ** *** = ** *** * *** *** * * ***
* ***** * ** * * **** *
**** ** ** **** * * (D > 0)
** ** ** ** ** *** * * *
* * *** *** * * * * **** * real and **** ** ***** *
* * ** *** * * ***** * ** * * = ** * *** ****
* ** * ** ** ** * **** * ** * = %.2f",x2);
* ** ****** ** * *
* ** ** ** **** *** (D == 0)
* * *** * * ** **
** *** ** ** * *** ** ** ** * * * real and same\r\n");
*** *** * * * ** *** *** ** ***** = x2 = %.2f",x1);
* *** ** * **** * ** ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.6.172
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users