0 like 1 dislike
5.3k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 5.3k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
**** *** * * *** *
* * * * *

int main() {
** ** **** * * **** *** ***** ** * * ** *
* * ** * * * * * * * * %f * *** ** &a, &b, ****
* *** * *** ** * ****** * *
***** * * ** ** * ** ** ** {
** ** ** * * * * * * ** * * **** * * *** * * ** ***** of %.2fx^2 + %.2fx + %.2f = 0 are complex and ** * * = * = * *** *** ** a, b, c, (-b)/(2*a), **** * * (-b)/(2*a), ***** * * **
* * ** ** ** * ***** **
** *** * ** * if(d==0) {
**** *** *** ** * ** * *** *** **** * ** * * * ******** * **
* *** * ** * ** * **** * * * * * * ***** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * *** * * *** a, b, c, x1);
*** * ****** ** * **
* * *** **** * ** * *** *** * * {
*** * ***** ** * * * ** * **** ** ** **** ** * *****
** ** * * * *** * * * *** * ** * * ** * ** *
****** *** * *** **** ** ***** * ** ***** * * ** *** ** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and ******* = %.2f\nx2 = * ** *** a, b, c, x1, x2);
* ***** ** ***** ** *
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include *** ** **
** * ** ** * **
#include ** ** ** ****

int main()
{
* ** ** **** *** * ** * * ***** *
* ** ****** ** * *** * * ** * *** %f **** *** *** **** * **
*** *** * * * ******* ***
**** *** * **** * *** *** * * ** *
* * * ** ***** ** * * ** * * *
* * ** ***** * *** * *
** *** *** * * ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and *** = %.2f\nx2 = **** * * * ***
** ** ***** * ** * ** if(D==0)
* * ** ** ** ** **** ***** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ** ** *
*** ******** **** ** *****
***** ****** * * * ** ** * ** ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and *** * = * *** * * ** = * * * ** ********* * * ** **** * *** * * ** * * * *
* * ** * * *** * * ** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ******* * * *
****** * ** ** **
** ** * * **

int main()
{
* * * * * *** * * *** * ** *
***** ** ** **** * ** * ****** * * %f ** *** ** ***** ****
* ** * * * ** *** * * * *
**** * ********* * * * ****
* * ** ** **** ** **** * * * *
*** * **** **** **** * **** **
* *** ** ** *** *** * *** * * **** * of %.2fx^2 + %.2fx + %.2f = 0 are real and ** * * = %.2f\nx2 = * ** * ** * *
*** ** **** ** **
* * * *** **** *** * ** * * *** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ** * ** *** *
* * * * * ** ** ** * *
* ** **** ******* * * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * = %.2f + **** = %.2f - *** ** *** ** * * ** ** ** ***
* *** ** ** *** * * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
**** * *** ** * ** * a,b,c,x1,x2,D;
*** * * ** *** * * * ** ** ** %f * * * * *** * ** * * *
*** **** * * * * ***
* ** * ** ** *** * ***** * = (-b + sqrt(D))/(2*a);
** * * ** *** * * *** = (-b - sqrt(D))/(2*a);
** *** ** **** * *** ***** *
*** ***** * ** **** ******** * *** ** * * *****
* * * ** ** * **** ** * ** **** ** ** * ** * * * * * ***** ** *** * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
** ** ** ** * * * ** * *** * * ** ** * *** ****** ** * ** * * *** * * = %.2f\n",x1);
** *** * * * **** * ** ** * * *** * * * ** * ** ** **** * * * = %.2f",x2);
* * * * * * *** ** * * ** * * ** * * * *
** *** * ** ** * **** ** if(D==0)
*** * ** * * * ***** * ** * ** ******
** ** * ** * * * ** * * ******** * ** ***** ***** * * * ** **** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
* * * * * ***** * ** * ***** ** * * ******** ** * * * * ** ** *** = x2 = %.2f",x1);
* * * * * **** *** * * * ** *** **
** ** * * * ***
*** ** ** *** ** ** ** ** *** ** ********
** * * ** * * **** * ***** * ***** ***** * * * * **** **** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
******* * ** * ** * * * * * **** ****** **** * * *** **** * ***** ** * * *** = ** ****** ** ** * * **
******* * *** * * * * ** * ** * *** * * **** ***** **** *** *** * = ** *** * * ** *
** * *** ** * * ** *** * * * * * ** * **
** * **** *** *** * **** * * 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
** * * ** * ** ** ** * a,b,c,x1,x2,D;
*** ** *** *** ** *** ** * ** * %f * * ** * ** * ** ** **
***** * *** ** * ** * ** * * *
** * ** *** * *** * *** = (-b + sqrt(D))/(2*a);
** *** * * **** ** ** * = (-b - sqrt(D))/(2*a);
**** **** *** **** ***** ** **
* ** *** * * * ** *** **** ** *** **** ******
* * ** * *** * * ** * * ** ***** * * **** *** * * ** *** * * * ** *** * * * ** ** * of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
*** * *** *** * **** * ** ** ******** * * * * * ** ** * ** * ***** * ** * ** = %.2f\n",x1);
** * * * * ** * ** ** * ******* ** **** ** * ** ******** * * * * **** * = %.2f",x2);
*** *** * * **** * * *** ** ***** ***
*** * **** ** * *** if(D==0)
* *** ** *** * * * ** * ** ** ***** ** ** ****** **
*** * ** ***** * ** *** * * * * * * ** * * ** * * * ** * *** * *** of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
**** * *** * * ********* * ** * * * ** ** *** ****** ** * ******* * * ** ** *** = x2 = %.2f",x1);
* ** **** *** * * * ** * ** ****** * *
* * * * ** * * *
* ** * ** **** * *** * * * * * * * * * * **
* * * * * * * * *** * ** * * *** *** * ** * * * * ** * **** * * ** * *** *** of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
** ** ** ** ** * *** * * * * * * ** ******* ** * * * * * * ** *** = * * * * *** * * ** ** **
**** * ** *** * * *** ** *** * * ** **** ** *** **** ** * * *** = * * ** * * ** * * * **
*** * * * **** ** * ** *** * *** * * *
** **** * ** * ** * ** 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
* ** **** ***** * *
** * ******* *** *
int main()
{
* *** ** *** * * * * * a,b,c,D = 0,x1 = 0,x2 = 0;
** * * * ***** *** ** ** * * ** **** * ** ** * * ** **** ***

* * ** * ** * ** ** *** *** * *** of %.2fx^2 + %.2fx +%.2f = 0 * * *
* ** *** * * * * * * ** = (b*b-4*a*c);
* * * * * * * * ** ** (D < 0)
** * * ******** * ** *** *
** * ** * * *** *** * * *** * complex and * * * *****
** * * ** * *** * * * ** *** * ** = * ** **** *** * *** * ** * **
* * * ** *** * **** ** * ** = ** ** **** ** * * * *
* ** * * * **** * * *
* * * * * ********* ** (D > 0)
** * * * * * ** * *** **
** **** *** *** * **** *** **** real and *** **** * **
* * *** * * * *** ** ** ** * = ** * ***** + sqrt(D))/(2*a));
* *** *** ** ***** * *** ** = %.2f",(-b - sqrt(D))/(2*a));
**** * * * **** ** *
* ** * * * ** * * (D == 0)
* *** ** * * ******* *
* * * ********** *** * * * real and same\n");
* * ***** ** * ** * * ** *** * ** ** ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* ** **** ** ** ** * * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* ** * * ** *
** * ***** * *** **
int main()
{
* * *** ***** * * ** * a,b,c,D = 0,x1 = 0,x2 = 0;
** ******* * * ****** * ** * ***** * * **** ** ** ** ** **

* * **** *** ** * ** * * * ** of %.2fx^2 + %.2fx +%.2f = 0 * **** ****
** * **** * **** * * * * * = (b*b-4*a*c);
** ****** ** * * ** * (D < 0)
** * ******* *
*** ** * * * **** ***** ** **** complex and ** * ** * *
** ** * ** * * * ** * *** ** = * ** * *** *** *** ** * ****
** **** * ** * **** * * ***** **** = * * ** * ** * **
** *** * ** * **** * *** **
** ** * ** ** * ** * (D > 0)
** * * *** * ***
*** * **** * *** * ** * * **** real and ** **
* ***** *** ** ** ** * ** = * ** * * ** + sqrt(D))/(2*a));
* ** ** ** ******* **** * *** ** *** = %.2f",(-b - sqrt(D))/(2*a));
* * ** * * *** *
**** ** * **** *** * * (D == 0)
*** ** * ** *** ** *
** * * ** ** * ** ** *** * real and same\n");
* *** ** **** ** ** * * * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* ** * * ** * **** * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* * * ** **** **
******* ** * ** *
int main()
{
** ** **** * * **** * * * * a,b,c,D = 0,x1 = 0,x2 = 0;
** * ****** * *** ** *** ** *** * * *** * * **** ** *

* * **** * * * * * * ** * *** * of %.2fx^2 + %.2fx +%.2f = 0 **** * * **
** ** ** * ** *** * = (b*b-4*a*c);
* * *** * ** * * * (D < 0)
*** *** ** * * ***
* * ** * *** ** **** ** * *** * ** complex and * **** * * * *
* * **** **** * ** **** * * ** = *** ** ** * *** ** * * * *****
** *** * ** * * **** *** *** * = ** * * ** *** ** * *** * *
*** **** *** * ** ** ** *
* ** *** * ** * ** (D > 0)
* *** * *** ** * * * *
* * ** * *** * * *** * real and * * ** * *
* **** ** * * * ** ** ***** ** = ***** * *** * * + sqrt(D))/(2*a));
* * * * * *** *** *** * = %.2f",(-b - sqrt(D))/(2*a));
*** ** ** * * *****
*** **** * * ** (D == 0)
* ***** **** ** ** *
*** * ** ** * ** * * ** real and same\r\n");
****** * * * * * ** ** * ** **** = x2 = %.2f",(-b + sqrt(D))/(2*a));
** * *** *** * * ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* ** ** * ** **
* *** ****** *****
int main()
{
* * * * * * ** * ** ** a,b,c,D = 0,x1 = 0,x2 = 0;
** * *** ** ***** *** * * ****** * *** * ** * *****

* * ** * ** ** ** * * ** *** *** of %.2fx^2 + %.2fx +%.2f = 0 ** * * ****
** ** * * ****** ** ** = (b*b-4*a*c);
***** *** ** **** ** * (D < 0)
* ****** ** * ***
** *** ** * ** * * *** complex and ** * * * * **
** **** ** **** * * *** * = ** ** * **** * * * * * * *
**** ***** *** * * * ** * *** ** * *** * * = * * ** *** * ** *
* * *** * * * * * * *
** * * *** **** *** * (D > 0)
* *** *** *** **
* **** * ** ** * * * ** real and ***** *** *
*** * * ** ** * ** * ******* * = ** *** ** + sqrt(D))/(2*a));
* *** *** ** * *** * * ** ** * = %.2f",(-b - sqrt(D))/(2*a));
* * *** *** * * * ***
**** ** * ** ** * ** (D == 0)
** ** * **** **** * * **
* * * * * * ** **** real and same\r\n");
* * ** * *** *** * * *** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* ** * * ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
**** ** * * **
*** * ** * * *****
int main()
{
* ** * ** *** * * ** a,b,c,D = 0,x1 = 0,x2 = 0;
* ********* ** * ** * *** ** ** ** * * * * ** * *

** *** * ** * ** * *** * * *** * of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
* * ** * * **** *** = (b*b-4*a*c);
** ** *** * **** * = (-b + sqrt(D))/(2*a);
** * ** **** * * ** ** = (-b - sqrt(D))/(2*a);
* * * * *** * ** * (D < 0)
*** * * **** * ** *****
* *** * ** *** ** **** * *** * ** * complex and * **** *** **
*** ** *** * ** *** * * ** * * * = **** * * * **** * ** * * **
* ** *** ********* *** **** ****** ** * = ** * * * * *** ***
* ** ****** ** ** * **
*** *** * ** **** ** * (D > 0)
* * * * *** * ***
** * * ** ** ***** * ** ** * ********* real and * * *
** ***** * * ** * ***** **** ** = * ** **** *
* ***** * * **** * * **** = %.2f",x2);
***** * * * **** *** *
*** * * * * ********* (D == 0)
* ** * * ** *** * ** * *
* ** *** * ** * ***** * ****** * ** real and same\r\n");
* **** * * * * ** ** *** * ** *** * * = x2 = %.2f",x1);
* * * ****** ** **** ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.6.190
©2016-2024

No related questions found

12,783 questions
183,443 answers
172,219 comments
4,824 users