0 like 1 dislike
11.9k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 11.9k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
*** * * * *** *
* * * * *

int main() {
* * ***** * * ** ** ** ** * * * **
* * * ** ** ** * *** **** %f **** * * &a, &b, ** *
** * *** ** * *** ** *
* ** ******* ** *** ****** {
** * ** ** *** * *** **** * * * * ** * *** ***** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * * = * ** * = ***** **** a, b, c, (-b)/(2*a), **** * * (-b)/(2*a), * * *
* *** *** ** ****
*** ** * * **** if(d==0) {
* ********** * * *** ** * ** *** *** ** *** * * * ** * * ***
* * * ** ** * * * *** ** * * ******** ** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * * * a, b, c, x1);
**** * ** * *** *** *
* *** * ** ****** **** ** * ** ** * {
* * ******** *** *** **** * ***** *** ** ***
***** * ** * * ****** * * * **** * *** *** * ***** **
******* * * * * * ******** * *** ** ** ** * *** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and ***** ** = %.2f\nx2 = * *** * a, b, c, x1, x2);
* * * * ** * ** * ***** **
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * ***** * * *
* *** * * * ** ***
#include ** ** *** *

int main()
{
* * * * * **** *** *** * * * * * ***
*** * ***** ** ******* * ** ***** * * %f ***** * * **** ** *
*** * * * ** ** *
*** * * * * *** ** ** **** *
* ** ****** * * * ********
** ** * * **** ** * ** **
** * * **** * * * * ******* *** of %.2fx^2 + %.2fx + %.2f = 0 are real and * * ** = %.2f\nx2 = ** * ******* **
* ** * *** **** *** if(D==0)
*** * ** * * *** * ** ** * *** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ** ** * *** *
* ** ** ** *** *** * ****
* *** * * * *** *** ** * * * * ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * *** = ** ** * * = * * *** **** **** ** * * * * * * *** ** * ****
*** * *** ** ** * *** * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ** ******** *
*** * ** ** *** *
** * ** * ** * ** *

int main()
{
* **** **** ****** * * **** *
** ** * ******** **** * *** %f ** * ** * * * * * *******
* ****** *** *** **** ***** *
* *** * * * **** * * ******* ** **
*** * ** * * ** * **** * ** ** **
* ** ****** ** * ** * **
**** *** ** ** * ** **** * ** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * *** * = %.2f\nx2 = * ** * * ** ***
*** * ** * * * **
* ** **** * **** ** ** *** * ** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * * * ** *
* *** * * ******* ** ** *
******* * * *** ***** * **** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * = %.2f + * ** * = %.2f - * * *** * ** *** * ***** * *** **
**** *** * * * ** * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* **** ******** ** ** **** * a,b,c,x1,x2,D;
* ********* * ** * * ** %f ** * * * * * *** * ****
* ** * ******* * * * *** ***
* * * * * = (-b + sqrt(D))/(2*a);
** * ***** * ***** * * * = (-b - sqrt(D))/(2*a);
* * * ** *** * **** * *
*** ***** ** * ** ** ** ** *** ** *
** * **** *********** *** * * * ** *** * ***** * ** * * ** ** *** **** ***** of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* * * * * *** * * *** * * * ** ** * * ** ** * **** * ** **** * * * * * ** = %.2f\n",x1);
* *** ** * ****** ** * ** * *** * ** ***** ** ** * * ** ** *** * * * ** *** ***** = %.2f",x2);
* * * * * ** **** ** ***** * * * * *** *
* ** ** **** *** *** * ** if(D==0)
**** ***** *** ** ** ** ** * ** *** ***** ** *
* ** ** * * * *** * * * ** * * * * ** ** ******* * ** *** * * * **** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
* * * * ** ** ** ***** * * ** ** * * * *** * * * ** * ** * = x2 = %.2f",x1);
*** * * *** ******** ***** ** ** * ***
** * * * * *
** * *** *** ** * * * ** ** * * *** *
* * * * **** * ** *** *** ******* * * ***** * *** ** **** * * * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
******* ** ** * **** * ** *** * ** * ** * ****** * ** * * ** ** = ** * * * * * *
* * ** ******** * * ** ** * * ** * ** ** **** * ***** *** ** *** ** * ** * * * = * ** * * * **
** * **** ** ** * * ** * ** * ******* * ** * * *
** * * *** **** *** 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
** ** ** *** *** * ** a,b,c,x1,x2,D;
*** * * *** ** ** * *** * * * ** %f * **** * * * *** * * *
***** * * ** * ** * *****
** ** ** * ***** * * = (-b + sqrt(D))/(2*a);
**** * ** *** * * * = (-b - sqrt(D))/(2*a);
* * * *** ***** * * * ** ******
* * ***** ** * ***** * ** * * ************ **** ** **
* ** *** *** ** **** *** * ** * * * ****** ***** * *** *** * * ** * * ** *** of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
** ** ** * * *** ** **** ** ** ** * ** * ** * * * * * * * * * = %.2f\n",x1);
* *** * **** *** * ** * * * * **** ***** * ** *** ** * * ******* ** * ***** *** = %.2f",x2);
*** * * **** *** * * ** ****** * ** **
*** ** * * * * **** * * if(D==0)
* *** ** * ** **** ** * ***** *** * *
** * * ** * *** * * * * * * *** ** ** * * * * **** * * * ** ** * * of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
* *** *** ** * * * ** *** ** * * ** ** **** * * * * ***** * *** ** * * *** * = x2 = %.2f",x1);
* **** * *** *** **** ** * * **
** ** * * * * ** **
* ** ** * *** *** * ** ** * * **** * * ***
** * *** ** ** * * ** *** ** ** ***** ****** ** ** * **** * ** * ** * * ** * * *** of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
** **** * **** ** ** * ** * *** * ***** * ** * ** * * * * ** ** = * * ** * *** * ****** * ***
* ******* ** *** **** *** * * ** *** * ** * * * ******* ** * * * * = * **** * * ** **** * *** *
*** ********* * *** * * * * * ** * * ****
* ****** ** * ** * ** * * * *** ** 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
* ** *** ** **
* ** *** ** * *
int main()
{
* * * ***** **** * * *** a,b,c,D = 0,x1 = 0,x2 = 0;
*** * * *** ** * ** *** **** ******** ** ** * ** ** * ***** * ** * *

* * * * ** ** * ** ******* * ** of %.2fx^2 + %.2fx +%.2f = 0 * * * *
* * * ** **** * = (b*b-4*a*c);
* * * * *** ** * * **** (D < 0)
** ** * ******* ** *
* * **** ******** * *** *** * * * complex and ** * *** *****
***** * *** ***** *** ** * * = ** * * ** *** * ********* * * *
* * ** * * * * ** * ****** * = * ** * *** ********
** * ** * ** ** **
** ***** * * * * * (D > 0)
*** *** **** ** * *
* ** ** * **** * ** * **** **** * real and ** * * *** **
**** * ** * * ** *** ** * *** = * **** * * * + sqrt(D))/(2*a));
* ** ****** * ** * * * * = %.2f",(-b - sqrt(D))/(2*a));
** ** * ** **
* ** *** **** * * ** (D == 0)
* *** ** * *** *
*** ** ** * * ** * **** * real and same\n");
**** * ** * * * * * *** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * * * ** * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* * * * * * *** *
* * ** * * **
int main()
{
** **** ** * *** * * ** * * a,b,c,D = 0,x1 = 0,x2 = 0;
** * *** ***** ** ** **** * ** ** * * ** ** **

** *** *** * * * ** * ** *** * * of %.2fx^2 + %.2fx +%.2f = 0 * * *** *
* **** * ****** * *** *** = (b*b-4*a*c);
* * ***** ** ** * **** (D < 0)
* ** * **** * * ** * **
* * ** * ** ** * ** * * ** complex and ****** *
** *** * ** * ** *** ******* * = * **** **** ** ** *
* *** ** *** *** *** ** * * = ** *** ** * * **** ***** * * *
*** * * * ** * *
** * * *** ** * ** * ** (D > 0)
******* **** ** *** ***
* * ** ** ** * * * * real and *** * * **
* ** ** * *** ** * * ** = * * * ** * + sqrt(D))/(2*a));
*** * * * * * * ***** ** ** ** = %.2f",(-b - sqrt(D))/(2*a));
* * * **** * * * * ***
* **** * * *** ** (D == 0)
* ******* * * * *** * *
** ** * ** * ** * ** * ** * real and same\n");
** ***** **** * * * * * * * ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** * * ***** *****
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* ** ***** *** * * *
* ** ** *******
int main()
{
***** * ** * * **** **** ** * a,b,c,D = 0,x1 = 0,x2 = 0;
*** * ** * ****** * **** * * * *** * * ** * **** *

* ******** * * ** ****** * ***** *** of %.2fx^2 + %.2fx +%.2f = 0 * ** * * **
* * ** ** * * ** * * ** * *** = (b*b-4*a*c);
* *** * **** **** ** ** (D < 0)
***** ** * * * * *
* * ** **** * * * * ** ** * ** complex and ** **** * *
* ***** * * **** * * * ** * * = * ** * ** ** * ***
* * ** * ** * * ***** * ** ******* = * ****** * *** *** *****
***** ** * **** * * ***
** * * * ** ** *** *** * * * (D > 0)
* * * ** * * * ******
** **** * ** * * * * ** **** * * real and * *** ***
* * ** ***** ** ** * *** * = ** ** ** * + sqrt(D))/(2*a));
** * **** * ****** ** ** * * = %.2f",(-b - sqrt(D))/(2*a));
* ** ****** *****
* *** ** ** ***** ** **** (D == 0)
* * * * * ** * * * **
** * * * ** ** * * * real and same\r\n");
* * *** * ** * ********* * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* ** **** ***** ** ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** ** * *
* * *** * * **
int main()
{
* ** * * ** ** ** * *** a,b,c,D = 0,x1 = 0,x2 = 0;
** *** ***** * * * * *********** * * * ** * * ** * ** *

** ****** ** * ** * * * * * * *** of %.2fx^2 + %.2fx +%.2f = 0 *** * * * *
** *** * *** * ** ** ** = (b*b-4*a*c);
* **** *** ** * * * ** (D < 0)
* **** * * ** ** * ***
* ** *** ** * ** * *** ** ** complex and ***
**** ** ** * ** * * * * * * * * * * ** = *** ** ** * **** *** *** *
*** **** * **** * ** * = * ** ** *** * * ** *
* *** ** ******* * **
** ** ** ** *** * ** ** * * (D > 0)
**** *** ** ******** *
* *** * *** * *** *** * ****** real and **** ** *
**** * ****** * ** ** ** = * * *** * * + sqrt(D))/(2*a));
** ** * * * * ** ** ******* * = %.2f",(-b - sqrt(D))/(2*a));
* *** * ** * *** * ***
* *** * *** *** ** * (D == 0)
** * * ** * * * ***
* * * * ****** *** * * *** * real and same\r\n");
* ** * * ** * * ** * ** * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** **** * *** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** *** * * *
**** ** * * * * ****
int main()
{
** * ** * * ** *** ***** a,b,c,D = 0,x1 = 0,x2 = 0;
* * *** * * *** ** ** * ** * ** * * **** * *****

* ***** ** * * * * ** *** * ** of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
*** ** * ** * * ** = (b*b-4*a*c);
* ** **** **** *** * = (-b + sqrt(D))/(2*a);
* * **** ***** ** * = (-b - sqrt(D))/(2*a);
** ***** ** * * * ***** (D < 0)
** * * **** * ** * * * *
**** * * *** * ** * ** * *** *** complex and * *** ** ** *
** * * * ** ** * **** ** **** = * ** ** ** *** * * ** **
* ****** * * * ** *** * **** = * ** * *** * ** * **
**** * * *** * *
* * * **** * * ** *** ** (D > 0)
**** ** ** ** * ** * *
* ** * **** ** * * * * *** * * *** ** real and ** *** ** ** *
** * * * * * *** *** *** **** * = ** *** * * *
* *** ** ** * ** ** * *** * ** * = %.2f",x2);
** ******* * * ** **
** * * * *** * * (D == 0)
*** * **** ** * **** ** **
* *** * ** * ** ** * * * * real and same\r\n");
* ** ******* * * **** * * ** * * * = x2 = %.2f",x1);
*** ********* *** * * **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.6.172
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users