0 like 1 dislike
12.2k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 12.2k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
* * *** * * ** *
** ** * ** * ** * *

int main() {
* ******* *** **** * * ** ** **
** * * * ***** *** ** ** **** * ** %f * ***** &a, &b, **** **
**** ** *** ***** ** ** ** * **
* * * *** * * **** * ** * {
** *** * *** ** * * ** * * *** ****** **** * **** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * ** * * = *** ** = ** * * a, b, c, (-b)/(2*a), ** (-b)/(2*a), ********
** * ** * * ** ** *
* **** **** ** * *** *** * *** if(d==0) {
* ** * ** * ****** *** * * ** * ** *** * * * * * * *
* * *** * * * * ***** *** **** * *** * * ** ** * *** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * * * a, b, c, x1);
** * * ** **
* ** *** ** ** ** * * {
****** ***** * * * ** * ** ** ** * * * ** * * * ****
*** * *** * * ** ** * *** ** ** * *** ** * *** ** **** *
** * * * ** **** ***** * * * *** * *** * * * **** *** * ** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * ***** = %.2f\nx2 = ** * * * a, b, c, x1, x2);
* ****** ** ** * * *
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ** *** *
* ** * * *** * *
#include * *** * **** **

int main()
{
*** * * *** * *** *** * * * *
* ***** * *** * * **** ** * ** %f ** ***** **** * * ****
* *** *** * * ** * **** **** * ** *
* ** ** * ** * *** *** ** * **
* ****** ** ***** *** * *** *** *
**** ** ***** ***** * *** ***
* *** ********* * ** ********* * *** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and ** * = %.2f\nx2 = * * **** * *
* * ** *** * ****** * if(D==0)
* * * *** * ** * * *** *** *** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * * * *
* **** * * * ** * **** *
** ********** * * ** *** ** ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and ** **** = * * ** = * * * *** * *** ** *** * * *** *** ****
** * *** * *** **** * * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ** * * *****
* ** * ******
* * **** **** *

int main()
{
*** ** ** * * * *** *** ** * * ****
**** ** * * * * * * * * * * %f ** ** ****** * ** **
** * ** **** * * * *
* * * * * ** * * *** * *
**** **** ** ** ** ** *****
**** * * * * **** * ** ** **
** *** ** ** * ** **** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and * ** * = %.2f\nx2 = *** * ** * *
* * * * * ********* * ** * *
******* *** ** * ** ** * * ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = *** * * *
*** * * * * * * * * ****
* *** ** * ** ** * ** ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and *** = %.2f + * = %.2f - ****** * * * * ** * * ***** * *****
*** ** *** * *** * * * *** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* * * ** ***** ** ** ** a,b,c,x1,x2,D;
**** * * ** * ***** * ***** %f *** ** * *** * ****
* * * ** *** * ****
** ** * * *** * * * * = (-b + sqrt(D))/(2*a);
** * * * * ** ** = (-b - sqrt(D))/(2*a);
*** * * ***** **** * * * **
* * * *** ** ** *** * ** * * * ** ** *
* * * * * * *** **** *** * * *** * ** *** ****** **** ** * * * * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* ** * ** *** * * **** * * * * ***** * * *** * * ** *** * * ** * = %.2f\n",x1);
* **** * * ** * * **** ** ** * * * * * ** * **** ** ******* = %.2f",x2);
* * ** ** * **** ** * * ** * *** *******
* ****** *** ** * ** * * if(D==0)
** * * * * * * * ** ** *** * * ** ****** *
**** * * * *********** * * ** ** * ******** * **** * * * ***** * * ** ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
* * * * * ** * *** **** **** * * ** ** **** * ** * * * * * ** *** * *** ** * = x2 = %.2f",x1);
** * * ** ** * **** * *** * * * *** *** **
* *** ******* * **
* * * * * *** * * *** * * *** *** *** *** *
* ** ** * ** ****** ** * * ** * *** ******* ** * * * * * * ** *** of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
* * ** *** *** *** ****** **** * ** * **** * ** ** * * * ** ** = ** ** ** ** ** *** *
**** ** * **** * * * *** *** **** * *** *** * * * *** * ** *** * * ** ** *** = ****** **** * * * *
** * * ** * ** ** *** ** * * * *
** **** ** * *** ** *** 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
*** * ** * * * * *** ** a,b,c,x1,x2,D;
**** * * ** * * * * ** * * %f *** * * * ******** * *
** *** ***** * * * * * *
**** ** ** ** ******* ** ** = (-b + sqrt(D))/(2*a);
*** * * *** * *** ** ** = (-b - sqrt(D))/(2*a);
** * ** * * * * ** ** ** * **
* * *** * **** **** *** ** ***** * ** ****
** **** * * * * **** * * * ** * * *** ** * * *** **** * **** ** ** *** ** * * *** of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
*** * * ** ** ** ** * **** ** * * * * * ** * ** **** * * * = %.2f\n",x1);
* ** ** * * ** ** *** * *** * * ** * * * *** ** * * * * * ** * = %.2f",x2);
**** * * ******* * * * * *** * * * ** *** **
********* * ** * ****** ** if(D==0)
* ***** **** ** ** *** * * * *** ** ** ***
****** ****** *** ** * ** * * ** ********* * * ** ** **** * ** * * **** of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
* **** ** ** * * ** * * * ** * *** ** * * ** * ** ** ****** ** = x2 = %.2f",x1);
* ** ******* * * * * ****** *** * * * * *****
* * *** * * **** *** **
* * ** * ** * *** * * ** ** * ** * **** ****
** * *** *** * **** * ** ** *** * * ** ************ * * * * *** ***** * * ** * * * * of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
** * * ** ** * ** ** ******* * *** ** *** * ** * * ** *** * * * * = * ***** ** * **** * **
** * ** **** * * ** * ** * ***** *** * ** * * *** **** * ** * *** *** * * * = ** *** ** *** ** **** ***
* * * ***** * ** * ******* * * ** **** * * ** ***
* * **** * ** ** * 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
* * ** * ****
* *** * ** *
int main()
{
** **** * ** ***** * * ** * * a,b,c,D = 0,x1 = 0,x2 = 0;
******* * ******* ****** ** * * ** ** * *** * ***** **** *

**** * ** * ** ****** ** ** * ** of %.2fx^2 + %.2fx +%.2f = 0 ** *** *
** ** * ** ** * ** ** * ** * = (b*b-4*a*c);
**** ** ** * *** ***** ** (D < 0)
* ** * * ** ** *
* ** * * ** * *** * *** * ** complex and * *** *****
* *** * * * *** ***** *** * * ****** * = *** *** * *** ** * ***** ** **
*** * ** * * ** ** *** *** ** = *** * * *** ** **
*** * * * * **** ** * ** *
* *** * ** * *** ** (D > 0)
**** * * * **** * * * *
* * * * **** * ** * real and * ** *** **
*** ** ** *** ** ** *** * ***** = **** *** + sqrt(D))/(2*a));
**** * * * * * * * *********** * = %.2f",(-b - sqrt(D))/(2*a));
*** ** * ** * * *** ***
* ***** *** ** * ** * * ** (D == 0)
**** ** * * * ***
* *** * ** ****** ** ** real and same\n");
** ** ****** * ** ** ** * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * * ***** ** * * ** * ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* * * *** * *
* * ** ** ** *
int main()
{
* ** * *** * * * ******** a,b,c,D = 0,x1 = 0,x2 = 0;
** * *** ***** * * ** *** ** * *** ***** * * ** * * *** * ***

****** ** ** * * * ***** ** * ** of %.2fx^2 + %.2fx +%.2f = 0 * ** * * * *
* *** * *** * ** = (b*b-4*a*c);
* ** * * ** ** * ** * (D < 0)
* ** ** * ** * * * *
** * * * * * * *** ***** * * complex and * * **** ******
** * ** **** ** ** ** * = ** * * ******* ** * * **
*** * * *** * *** * * ** * *** * * = *** * * * ** * *** * *
***** * * ** *
** ********* ** ** * * * * (D > 0)
*** *** * **** ** **
** ** * ** * *** * ** ** ** * * real and * * **** * *
* * *** **** * * **** ** ** ***** = * * * * + sqrt(D))/(2*a));
* ** * ****** * * ***** ** *** * = %.2f",(-b - sqrt(D))/(2*a));
* * * ** ** ***** *
*** ** ** * * * ** (D == 0)
*** ** ** ********* ***
** * **** **** * * * ***** * real and same\n");
* * * ** ** * ** * * *** = x2 = %.2f",(-b + sqrt(D))/(2*a));
** ** * *** *** * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* * * *** *
** * * **** * * * **
int main()
{
** ***** ****** * * * * ** a,b,c,D = 0,x1 = 0,x2 = 0;
* * ** * * **** ***** ** * * ** ** ** * *** * * *

******* *** * * * * * * ** ** ** ** of %.2fx^2 + %.2fx +%.2f = 0 ** ** ***
* ** * ** * * *** = (b*b-4*a*c);
********** ** *** * * * ** (D < 0)
* * * * * ** *
*** * ** * *** * ***** * * * **** ** * complex and ** * ** ** *
* *** *** * ** **** *** * * = ** ** * *** * ** *** *** * ***
* **** * **** *** * ** * *** = **** *** **** * **
***** ******* **** *** *
** ** ** * ***** ** (D > 0)
* *** **** * * * *** **
* **** ***** * * *** * ** * * * real and ** * * *** *
**** * * * ***** ****** * **** = *** * * ** + sqrt(D))/(2*a));
** ***** *** ** ** * ** * * = %.2f",(-b - sqrt(D))/(2*a));
* ** * * * *** ** **
* * * *** ** ** * (D == 0)
* ****** ** *** *
* *** * ** ** *** **** real and same\r\n");
** ** * ** ** ** * ** * * * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** * ** * * ** ** * ** ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* * * * * ** * **
* * * ***
int main()
{
**** *** * *** * * ** a,b,c,D = 0,x1 = 0,x2 = 0;
** ** ** **** * * **** ** * ***** * *

** **** ** ****** *** * * ** of %.2fx^2 + %.2fx +%.2f = 0 * * ** ***
* * * * ***** ***** ** = (b*b-4*a*c);
** ******* ********* (D < 0)
*** *** ** * ** * ***
**** ** * ** * * * * *** * ** complex and *** ** *
** *** * ** * **** * * = ** * ** **** ** **** * * **** *
* * * * * ** ** **** ***** ** *** ******* = * * * * ** * * * * *** ** *****
**** *** *** * * **
* *** ** * **** * * * (D > 0)
* ****** * *** * * *** *
* * * * *** * ** * *** * * ** * * real and * ** ** * ***
* ** *** ** * ************* * * = *** *** ** * + sqrt(D))/(2*a));
****** *** * * ******* * * * * ***** = %.2f",(-b - sqrt(D))/(2*a));
* * ** *** *** *** *
* *** ** * ***** ** * (D == 0)
** ** * **** * ** *
** * *** * ** ** * *** * * real and same\r\n");
* **** * * ***** *** * ** *** = x2 = %.2f",(-b + sqrt(D))/(2*a));
**** ** ** * **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* ** ****** ***
* * * ** * *** * *
int main()
{
*** ** * * * * ** * a,b,c,D = 0,x1 = 0,x2 = 0;
** * ** ** * ** ** * ** * * * ** *** ****

**** ** *** *** ** ** ** ** ***** of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
* *** ** **** ** = (b*b-4*a*c);
** ** * *** ** *** = (-b + sqrt(D))/(2*a);
** * ** ****** ** * ** ** ** = (-b - sqrt(D))/(2*a);
* * * * ***** *** *** * (D < 0)
* * * ** *** * ** * *
** ** *** * **** **** complex and ** * * **
** ** * * * * * * *** = * **** ** ** * * ** * **
** * * **** *** * * * ** ** * * **** ** = * * * ** *** **
* ** *** * ** * *** * **
* ** * * * * **** * *** (D > 0)
** * * ** **** ** ** * * **
* * *** * ** * ** * ** real and ** ** * ** **** **
** * **** * *** * * * ** = * * ** ** **
* **** *** *** ** * * * * * = %.2f",x2);
*** *** ** * * *
** *** * * * **** * * *** (D == 0)
* * ** *** *** *
* ** * * * * *** **** * ** ** real and same\r\n");
** * * * *** * * * * ** ** *** = x2 = %.2f",x1);
* * * ** * ** * ****
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:108.162.241.185
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users