0 like 1 dislike
13k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 13k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
** *** * * *
**** ** * *** ** **

int main() {
* * * * ** * * ***** ** *
**** * ** *** * ** ** * ** *** %f ** ** ** &a, &b, ** * * *
* * ** * **** *** ** * * * ***
*** ** ** ****** *** * {
** * ***** *** * **** * ** * ** * * ***** * * * ** ** * ** ** * ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and *** *** = * * ** = * * * * a, b, c, (-b)/(2*a), * ** **** (-b)/(2*a), ** **** *
****** ** * *** ** * *
**** * * * * ** * * * if(d==0) {
*** * *** * * * ***** * ** ** **** ** * * * * *
* * ** ****** *** * * * * * * * * * ** ***** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ** *** a, b, c, x1);
** *** * *** * ***
* * ** * ** * * *** *** ** ** * ** {
** * * *** *** * * * ** **** * ** * * * ** * ** ** ***
* * * ** ** * ** ** * *** ********** * ** ** ** *
** * * * ****** *** ** * * * *** ****** ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and ** * * ** = %.2f\nx2 = ** ** * * a, b, c, x1, x2);
* *** **** * * ** * ***
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ** *
* ** ** ** ***
#include ** * ** **

int main()
{
* *** * * ** * **** * **** *** ***
** * * * **** ****** * * %f **** * ** ** ******
** * *** * * * * *******
* *** *** * ** * ** * * ** *
** ** * ***** ** ** * ** **** * ** *
*** * * *** ***** *
* *** * ***** ** * *** * * *** of %.2fx^2 + %.2fx + %.2f = 0 are real and ** * * = %.2f\nx2 = *** ** * * ** **
* *** *** * **** *** * * **** ** if(D==0)
* * ** * * * * * * ** *** * ***** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ******** * * *
* * * * * * *** ****
** * **** * ** *** *** ** ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and *** * = **** * ** = ** *** * *** * * ** * * * * ****
** * * **** * * ** * **** * * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * ** * * ***
* * ****** *
** *** **** * **

int main()
{
*** ***** * * ** * ** * * * ** *
******** **** ** ** * * ** %f * **** ** * * *** * ** *
** ** * **** *** ***
** ** ** * *** * * ** * *
* ** **** * * *** ** ** *** * *
*** ****** * * ** * * * * ***** **
*** * *** **** **** * ** **** ** **** of %.2fx^2 + %.2fx + %.2f = 0 are real and *** * = %.2f\nx2 = * * ** * * **
* * * * * ** ** * * * * * * **
* ** *** * ** ** ** * ** *** ** * *** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = *** *** ** ** **
*** ** *** **** *** ***
* * * * **** * ** * * ** * ** * **** * ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * = %.2f + * = %.2f - ** * * * * ** * *** *** *** **** * * *
* ** ******* * ** * ** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* ***** *** ** * **** ** a,b,c,x1,x2,D;
* ** ** * * ** ** * %f * * **** ** ** * *** *** *
** **** * *** * * * * * *****
* ** * * * * * ** = (-b + sqrt(D))/(2*a);
** * ** * * * * **** * ** ** = (-b - sqrt(D))/(2*a);
** **** ** * * * *** ****
* * * ** * *** ** ** **** **** **** * * * * * ** * **
* ** * * *** * * *** * ** ** **** ** * * ** ** ** * ** * * * ****** *** *** * of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
*** ** * *** * * * ** **** ** ***** **** * * *** ** * ** * ** * * = %.2f\n",x1);
**** ** * ** ** * ** ** **** **** * **** * * ** *** * *** ** * ** * * * * * = %.2f",x2);
** ** * * ** *** * ** ***** * ** *** *
** *** * * * * * **** if(D==0)
**** * ** * *** * * *** * * * * ** ** *****
* ** * * * ** * * * * * ** ***** * * * **** * ** * * * ** ** * ** ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
** ** * ** * ** ** ** *** * * * **** ** * * * * ** * *** *** * = x2 = %.2f",x1);
* ** * * *** * * * * ** * * * * ** * ** * * **
* *** ** *** * * *** **
**** * * *** ** ** * * * *** * ** * * * * *
* *** ** * ** ** ** * ** *** ** * * ** * * ** * ** * **** * * * ****** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
* * * * **** **** * * * ** * * * * ** * *** * * **** * ** ** **** = *** * ******* * **** **
**** * * **** * ** ** ** **** * * * * ******* ** * * * * * ** **** * ****** * = **** * **** ** ** * *
* * ** ** *** * ** * * ** * * * * * *
* ** ** * ** **** * * **** 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* * * **** * ** * * **** a,b,c,x1,x2,D;
* **** * ** ** * * *** ******* **** ** %f * *** * * * **** * * ** **
** **** **** ** **** * *
*** * * ** * * ** * *** = (-b + sqrt(D))/(2*a);
** ***** * **** ** = (-b - sqrt(D))/(2*a);
* ** *** ** ** * * * * *
* ** ** ** * * ** * * * * ** * ** ** *
** * * ** * ** ** * ** * * **** * ** ** *** * *** * * * **** ** of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
* ** * * ***** * *** * ****** * *** ** * ** * ** *** * * * = %.2f\n",x1);
******** * * ** *** ** * * * ***** ** * * * ******* * * ** * * ** ** = %.2f",x2);
** * ** * * ** ***** ** * ** * * ***
** * ** ** * ** ** **** if(D==0)
* *** * * * * * *** ** *** ** *** *** ** ** * **** *
* ** * *** * * ** * * * * * ***** **** ***** * ** * * * * * *** of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
* * * *** * * * **** ** * * ** * ** * ** * ** * * ** ** * *** ***** ***** = x2 = %.2f",x1);
* * ** * * ******* * **** ** * *** * * * *** *
*** ** ** * ** * * **
** **** * ** ** ** * * * *** * ** * **
*** * * * * *** **** * *** *** ** ** * ** *** *** *** * * of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
***** ** * **** * * * * ** ** *** * ** *** * ** * * * *** * ** * ***** **** = ** * * * ** *** ** * *
* *** * ***** * *** * * * ** * ** *** ******** ** ** *** * * ** * ** = * * * ** * ** * *
***** * ** *** * ***** ***** * *** * *****
**** * ** *** * ** * * * * 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
*** * * * ** **
* * **** *** **
int main()
{
* ** ** *** * * * ******** a,b,c,D = 0,x1 = 0,x2 = 0;
** * **** * * **** * * * * * ** * **** **** ** **** *

********* * * * * * * * * *** ** of %.2fx^2 + %.2fx +%.2f = 0 *** ** *
* *** * * * *** * * * = (b*b-4*a*c);
* ** * * ** * * (D < 0)
***** * * * ***** *
** * ** * *** *** * ** *** **** complex and **** * **
* * * * ** * * * *** *** * = ***** * * * * * * * ** ** * *
** * * ** * * * * ** * ** = * *** ** * *** ** *
** * * ** ** ** * * ***
* ** * ** * ** (D > 0)
* *** ** * ***
* ** * * * ** ** * ** * * ** ** *** real and ** ** ** * *
*** * **** * * ** *** ** * * **** = * *** * + sqrt(D))/(2*a));
** * * * * *** *** * * * * * = %.2f",(-b - sqrt(D))/(2*a));
* * ** ** * * **
* * ** ***** **** ** * (D == 0)
* ** *** ** * * *
****** *** ** ** ** * * ** * ** ** real and same\n");
* ** * *** *** * * * ** * *** * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * * ** ** ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
*** ** ** * * *
** * ** ** ** **
int main()
{
* ** * ** * * **** ** * a,b,c,D = 0,x1 = 0,x2 = 0;
******* ** * ** * ** * * * * ** **** ** * **** ** **

* * ** * * * ** * ** * * ** * of %.2fx^2 + %.2fx +%.2f = 0 ** *** **** *
** ** * *** * ** = (b*b-4*a*c);
* * * ****** ******** * (D < 0)
* **** * * ** *
** ** ** *** * * *** * * complex and ** * **
* **** ** **** ** ** ** ***** *** = ** * **** *** ** ** * **
** ** * * ** **** * **** ** ** = ** ** ** * ** ** *** *
* ** ***** * * **
***** ** * ** * * * * ** (D > 0)
**** ** *** ****** * ** *****
* **** * * * ** * *** ** * real and ** * ***
* ** ** *** * * * * ** ** * * * = *** ***** ** ** ** + sqrt(D))/(2*a));
**** ** **** * * *** * * * **** * = %.2f",(-b - sqrt(D))/(2*a));
* ** ** * ***
* *** * **** (D == 0)
*** ** ****** * **
** * ** * ** * * * real and same\n");
* *** * * ** * * * *** * * ** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
** * *** * ** * * **** * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* * ***** * * * **
*** * * * * ****
int main()
{
* ***** * * ** * * a,b,c,D = 0,x1 = 0,x2 = 0;
***** **** ****** **** ***** * * * ** * ** * ** *** ** **

* * * *** ** * * * ** * ** ** *** of %.2fx^2 + %.2fx +%.2f = 0 ** *** ** **
***** * ** ****** = (b*b-4*a*c);
* ** * **** ** * *** * (D < 0)
*** * ** * *** ** *** * **
* ** ** * * ** **** ** * complex and ********* ** ***
* *** **** *** * * *** *** **** * = * *** **** ** ** * *
** * ***** * * ** *** **** ** * * * * = * * * ** ** *** * * *
** *** * * * *
** * * * ** **** * ** * * (D > 0)
* * ** ** *** ***
***** * * * * * * * ** * * real and ** * * ** * *
* * *** * * * ** * *** * *** ** = ** * * * * * + sqrt(D))/(2*a));
* *** *** ** * ** *** **** * * **** * = %.2f",(-b - sqrt(D))/(2*a));
*** ***** **** * **
** * *** *** * (D == 0)
* * **** ** **** ***
** ** * **** * * * * * * * real and same\r\n");
** * ** *** ** ** *** *** = x2 = %.2f",(-b + sqrt(D))/(2*a));
** * *** **** ** * * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
*** *** *** ***** **
* ****** * *** *
int main()
{
*** ** * * ******** * a,b,c,D = 0,x1 = 0,x2 = 0;
**** ** ** ****** * * * * * ******* * ** ** ** *****

* ***** * *** * * * * * *** of %.2fx^2 + %.2fx +%.2f = 0 ** ****** * * *
** * *** * ** ** = (b*b-4*a*c);
* ** * * * * * ** (D < 0)
* **** * **** * * ** ** * *
** *** **** * *** * * * ** complex and *** * **
* ** * ** *** *** ** ** = * * ****** * **** ** ** ** * *
*** **** * *** * * *** * *** ** * **** ** = ** *** ** ***** * ****
****** **** *** * *** ****
**** **** ** * * (D > 0)
*** *** ** *** *
* * ** *** * ** * * ** * * * real and * ** *** **
* * * *** *** * ** * ** *** = * ******* * * + sqrt(D))/(2*a));
* ** * * **** ** *** * ** ** = %.2f",(-b - sqrt(D))/(2*a));
***** ** * **
** * *** **** * ***** (D == 0)
**** **** * ** * * * * ***
** * * ** * ** *** * ** * ** * real and same\r\n");
** **** ** * **** *** *** * ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
**** *** * ** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* **** ****** **
*** ** ** * ** **
int main()
{
* * ** **** *** ** a,b,c,D = 0,x1 = 0,x2 = 0;
*** * * * ** ** ** * * ** * * ** * *** * * * **

* * * *** * * * ** * ** *** *** ** * * of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
* * * * * *** * * = (b*b-4*a*c);
* * ** **** * ** = (-b + sqrt(D))/(2*a);
* ** * * ******* * ** ** = (-b - sqrt(D))/(2*a);
* * * ***** (D < 0)
***** *** * ** ** *** *
* * ** * * * * ** ** ***** * * * complex and ** ** * ****
* * * ** ** * * * * *** ***** * = * ** *** ** *** *** * *
** * * * ** * * * * * * ** * = ***** **** * ** * ** **** * * * *
* ***** * *** * ** **
* * * * *** ***** * ** (D > 0)
** * *** ** ** * * *
* * ** * * * * * *** ** ** real and * *** ** *
* * * ***** * * **** ** * * * *** = ** * * *
* * * * ** ***** *** * * * * ** * = %.2f",x2);
* ******* *** *** ** ****
** * * * * (D == 0)
* * ***** * ** * ***
* **** * ** *** * *** * ** ** ** real and same\r\n");
*** * * * *** * ** ****** * = x2 = %.2f",x1);
* ** ***** * ****** * ****
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.80.21
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users