0 like 1 dislike
6.7k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 6.7k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
*** ** ** ** *
** ** * * **

int main() {
** ** * **** ** * * ****
* ** * ** * * * *** * * * ** * ** * %f *** * &a, &b, * * * *
* ** ** * ** * * ** **** ** * * **
* * **** * * ** **** *** {
** ** ** ** **** * **** ** ** * * * **** * ** * ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and ** * = ** *** = ** ** * * a, b, c, (-b)/(2*a), * ** * (-b)/(2*a), ** * *
* ** *** * ** * *
* ***** * ** * * * * *** ** if(d==0) {
**** ** *** * ***** * * *** ** ** ** ***** * *** * *** *
** ** * * * * *** * * ** ** * ** * * * * **** ** *** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * *** * a, b, c, x1);
** ***** * ** ** * * *
*** * * ******* * * ** * * {
* ** ** *** * * ** * * * * * * *** * * ** * * *
* ** * *** * **** ** *** ** *** **** ****** **** *
* *********** ** * ** * *** * ** *** * * *** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and * = %.2f\nx2 = ** a, b, c, x1, x2);
**** *** ** *
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include *** * * * **
* * * * ** *** *
#include ** ** *

int main()
{
***** ***** ** * ** * * **
* * ** **** * * * ** ** ** %f ** * * ** * * ** **
** ** * *** ** * ** ****
*** * * *** * * * * * ** ** *
* * * * * * * * * ** **
*** ** * * *** * ** * **** * **
* *********** ** * * * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * ** ** = %.2f\nx2 = * * * * ** ** **
**** * * **** * ***** if(D==0)
* ** * *** * * *** ** * **** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = *** *** ** ** ***
** ** * ** ** * **
** **** * * ** * * ***** *** ** *** of %.2fx^2 + %.2fx + %.2f = 0 are complex and *** * ** = * * * = ***** **** *** ** * * **** ** * ** *
***** * * * ** **** ***** * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ** * ***** *
**** ** * ***
* * ***

int main()
{
* *** * * *** * * ****** ** * ***
*** * *** ***** ** ** *** %f * * ** * *** **
* ** * ** ** * * *****
****** * *** * *** * **** ** * * * * **
* * * ** ***** *** *** * ****** **
* * ******* * * * **** **** *
* * * * * * * ** * * *** ** * **** of %.2fx^2 + %.2fx + %.2f = 0 are real and * * **** = %.2f\nx2 = * * * ** * *** * *
* * * * ****** *** * * **
* *** * * * ** * *** * **** **** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * **** ** *
** ******* ***** * * **
* * * * *** *** ** * * * **** ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and **** ** = %.2f + ** = %.2f - **** * *** ** * * ** ** ** * * *
* **** * ** * ** * ** * **** * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
****** * * ** * * * a,b,c,x1,x2,D;
**** ** ** ** * **** * * ** * ** %f ** **** *** ***** ** * *
*** ** * * * *** * ** *** *
** *** * * *** = (-b + sqrt(D))/(2*a);
* ** * *** **** ****** **** ** * = (-b - sqrt(D))/(2*a);
* * * * * ** * *** ****
*** *** * * ** ** * * ** * ** * ********* *
**** * ** ** ***** ** * ** * * ** * * * *** * ****** * ***** ** * * ** * *** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* ** ** **** * **** *** * **** *** ** * ******* ** ** * *** * ** = %.2f\n",x1);
* ** * * * * **** * *** * *** ***** ** ******* ** * * ** * * ** * ***** ** = %.2f",x2);
* *** * ** * * * *** ** ** *
* * * * * * ** ** ** if(D==0)
*** *** ** ** *** * * * ** ** * * * *
*** *** *** *** **** * *** * *** * * *** * * ***** ** * * * ** ** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
* * *** * * * *** *** * *** ** * * ** *** ** * ** *** ** * * ** * * * * * = x2 = %.2f",x1);
** * * * *** * ** *** **** *** * *** ** * * ** * ***
* *** ****** **** *** ****
*** * * * **** ** * *** * * * *
*** * ** ** ** ** * * *** * *** * * ** *** ** *** * ** ** ** ** * *** * * *** of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
* * * *** ***** ** ** ** ** ** ****** * * * * * * * ** ** ** * * * * * = * * **** ** * *
* * ** ** * * ** ** * * * * * ** ** * * * * *** ****** * * *** ********* *** * * ** = ** ** * * * * *
** * * ** ** **** * ** * *** * ** *** *** **
* ** ** *** * * * *** 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
*** ** * *** * *** * ** * a,b,c,x1,x2,D;
* * **** * * ** ******** * * ** %f *** * ** **** ** **** ***
** ** *** ** * ** * ***
** ** * ** ** *** * = (-b + sqrt(D))/(2*a);
*** ******** * *** * *** * = (-b - sqrt(D))/(2*a);
* * ** ** * *** *** *** *
*** ***** *** ** * * ** ** ***** * * * **
* ** **** * * ** * * ** * * *** * **** **** ** ** ** ** ***** * * * * of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
* ** * ** ** * **** * ** * * *** * *** **** * * * * * * **** ** * * **** * = %.2f\n",x1);
* * * * ** * * ** **** ** ** * * ** * ** * * * * * * ** * *** ** = %.2f",x2);
** * * *** ** * * * ***** ** * * * *
* * * * ** * * * * * **** if(D==0)
* * * ** * * * ** * *** * ** * *** *
* * ** *** ** * * * * * ** * * ****** * * ****** * ** ** **** ** * ** of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
** ** *** * *** * * * * ** * ******** ** *** ** * * * * * * * = x2 = %.2f",x1);
** * ** * ** **** ******* ** * * * ** *
* *** ***** * * *****
**** * * * * * ** *** ** *** ** * ** ** *
* ** * **** * * ** * * ** **** **** * *** ** * **** * * ** * *** **** * of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
*** ** *** * ** * *** ** ** *** * * * *** * * ** * ** ** * ** * **** **** = * ** * * ****** *
* *** ** ** **** **** ** **** **** ** ** **** * * ** *** **** * * * * * * * ** * = * * * * *** * * * * ** *
* ** ** ** ** ** * *** *** *** * ** ***** * ***
* ** ** **** * **** * 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
*** * ********
*** * ** * *
int main()
{
**** * * * ** * * ** ****** a,b,c,D = 0,x1 = 0,x2 = 0;
* ***** *** ** * * * *** * ** **** * * * ** * * ***** *

** * ***** ***** *** * * * ** of %.2fx^2 + %.2fx +%.2f = 0 **** * *
* * *** ********* **** = (b*b-4*a*c);
*** * * * * ** ** ** * * * (D < 0)
** * * *** ** **** **
*** **** ** * ** *** ***** *** complex and *** * * **
** *** * * * * * ** * *** ** * = * ** * * **** * * * * ***
** * * ****** * *** = ********* * *** *** * *****
* *** ** * * * *** *** * **
** ** * * ** *** * * *** ** (D > 0)
* **** * *** ** ** **** *
* * * * **** ****** *** *** real and * ** *
** * * ****** * * = * * * * * + sqrt(D))/(2*a));
* ** * * * * * * * * * ** *** = %.2f",(-b - sqrt(D))/(2*a));
**** * ** ** * * * **
* * * ** * * **** * (D == 0)
******* *** * * *** **** *
* ** *** * * *** * ** * ** ** real and same\n");
* * *** *** ** ** ** ****** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
** ** ** ******* *** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
****** ** *
* **** *
int main()
{
** * ** * * ** * *** *** a,b,c,D = 0,x1 = 0,x2 = 0;
* ** **** * ** ****** ** *** ** * * *** * * *** ** * * ** **** *

* *** ****** * * * **** * ** ****** * of %.2fx^2 + %.2fx +%.2f = 0 **** * * * *
***** * * ** = (b*b-4*a*c);
** *** * *** ** * * ** (D < 0)
* ** * ***** * ***
****** *** *** ** ** * * * ** *** complex and * **** *** *
** *** * *** ********* * * *** = * **** ** * * *** *** * *
* * * * * * **** **** *** ***** * * = *** *** *** *** * * * ****
*** * * ** ******* * **
** ** ***** * ** * (D > 0)
*** ** *** *** ** **** **
* ***** ** *** * * ** * ***** * real and * * * *****
*** ** ** ** * * ** ** * ***** = ** **** ** + sqrt(D))/(2*a));
*** * **** * ** * * ** * * * = %.2f",(-b - sqrt(D))/(2*a));
** ****** * *** * **** * **
* ** ** * ** ** * (D == 0)
* ** * ** ** * * * *
*** ***** ** * * * * * *** real and same\n");
* * * ** *** * * * **** * ** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* ** * **** * **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
*** *** ** ** *
* * * * ** * *
int main()
{
** *** **** * * * * a,b,c,D = 0,x1 = 0,x2 = 0;
******** ***** * * * ***** ** * * * * ** * ***** * ** ****** *

*** * **** * * * ** * *** of %.2fx^2 + %.2fx +%.2f = 0 * ** *** *
* *** * *** ** * * = (b*b-4*a*c);
* ** ***** * ***** (D < 0)
** ** * ** * ** * *
**** * * * ** ** * * complex and * ** * ** *
* *** ** * *** ** * * * ** *** * = * ** * * *** ***** * * **
********* * * ** ** * = ** * * * * ** *** * ** ***
*** *** **** * * * *
* * * *** (D > 0)
** * ** * * ***
***** **** * *** * ** * **** * * real and *** ** *
** * ** * * * * * ** *** * **** = * * ***** * + sqrt(D))/(2*a));
* ** **** * * * * * * ********* ** = %.2f",(-b - sqrt(D))/(2*a));
* *** ****** ** * ***
**** * ** ** (D == 0)
******* * ** ** ** ** *** * **
* ** *** ** * * **** *** **** real and same\r\n");
* * ****** * *** * ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * *** * * * **** * * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
***** ** *
*** * ** * * *
int main()
{
******** ** * * * * *** ** * a,b,c,D = 0,x1 = 0,x2 = 0;
* *** ** * **** ******** * ********* * * * ** ** * *** * *

** * * * ** ****** ** ** * *** * * of %.2fx^2 + %.2fx +%.2f = 0 ** * ** *
** * ********** ** = (b*b-4*a*c);
*** **** ** * * **** *** (D < 0)
** * ** ** ** ** ****
** **** ** * *** * * * complex and ** ** **** * *
*** ****** * ** * ***** ** * * = * *** * * * * * * * * *
* * *** * *** ** ** ** * * * = * ** ** * * *** * ** **
* * * * *** * *
** ** ** ** ** * ** ** (D > 0)
* * * ** * * * ** **** *
** * *** ** * ********* * * *** real and ** *** ** ***
* ** ** ***** ** ** * *** ** = * *** ** * + sqrt(D))/(2*a));
*** * ***** * * *** * **** * * * = %.2f",(-b - sqrt(D))/(2*a));
****** ** * ****** ** *
* * **** * * * * (D == 0)
* *** *** ** ** * * *
*** ** ** ** ** ***** ** real and same\r\n");
* * * ** ** ** ** **** *** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* **** * * * * * **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
*** ** *** ** * ** *
* ** * ** * * **
int main()
{
** ****** * ** * * *** ** ** a,b,c,D = 0,x1 = 0,x2 = 0;
** * * * * *** * * * * **** * ** *** ** *** **

*** * * * * ** **** ** * * * ** * of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
** * **** * * * * *** = (b*b-4*a*c);
* *** *** * * * **** = (-b + sqrt(D))/(2*a);
* ** * ** * ** * ** * * = (-b - sqrt(D))/(2*a);
* ******* ***** * * ** * ** (D < 0)
***** * ** * ***
* * ******* **** ** * ***** ** complex and * * ***** * ***
* *** * * ** ** ** * **** * * * = * ** ** * * ** * * ** *
** ** ** ******** *** **** ** * = * *** * * * *
** ***** ***** * ** * **
**** * ** * * *** ** **** * (D > 0)
* * ** * *** ** *
** * * **** * * * * real and **** * ****
* * * * * *** * ** * = * * *** *
** * * *** ** *** * *** * * ****** ** = %.2f",x2);
* * * ** * ** * * *** ****
* * ** ** * *** * * * (D == 0)
**** * ******** * * * **
* * **** * * ** ** **** *** *** * real and same\r\n");
*** * * ********* * *** * = x2 = %.2f",x1);
* * * * * ***** *** ** ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.127.228
©2016-2025

No related questions found

12,783 questions
183,443 answers
172,219 comments
4,824 users