0 like 0 dislike
1.1k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.1k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
*** * * * * ** **** * *** * * * **

    for(i=3; i<x ;i++){
* * ** ** ** * ** ** * ** *** **** * ****** * * *** * * j<x-i ;j++){
* * * ** * ** * *** * * ** *** ** ** * ** ** * * *** **** * k<x-i-j ;k++){
* * ** * ** ** *** *** *** ** * * ** ** *** *** * ** * * ** * * ** ** ***** ** * * * i*i + j*j == k*k ){
** * **** ** ** ** * *** * * ** **** ** * *** ** ***** *** * * * * ** * ** ***** * * * ********* * * *** ***
*** ** ****** * *** *** *** ****** ** * * *** * **** ** ** *** **** * * *** **** **** ** *** **** ***** ** *** * ** ****** ** ******** ** **** * * *


*** ** * * * * **** * * * * * ** * * * * ** * ** ** * * **** * * * ** ** * * *** ** ** * ** * * * ** ** ** %d %d",i,j,k);
*** ** **** ** *** ** * ** * **** ** * * * * * * ** * ** * * * * * * * * ** ** * ** * ******** *


** * * *** ** ** ** * * * ***** ** * * * *** ** * ***** * * * * *** *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
** * * ** * **** *** * x,i,j,k;
* * * ******* ** *** *** * * *** **** **
**** * * * *** ******* **** i<x ;i++){
*** *** * ** * * ** * *** ** ** ** j<x-i ;j++){
* * * * * * *********** * *** * *** ** * *** ***** ** * * * k<x-i-j ;k++){
*** * ** * ** ** * * * * * * ***** * * * * * ** * *** ** * * * i*i + j*j == k*k ){
*** ** ** * * **** *** * * * ****** ***** * ** * * * *** * ** ** * * ** * * * *** ** ** * ***** * ** * *** %d %d\n",i,j,k);
**** ** ** **** * * * * * *** * * * ********** ** * * ** * * * **** ** ** ********* **
** * * * ** * ** **



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
*** * * * * * * *
* * ** * ** **
** * * * ** *
* * * ** *

** ** * * *
** ** ** * ** * *****
*
* * *
* *
* * *
*
** *
*

*
*** * *** ** * * *** * i * = i * * = i * **** * *** * *

** ** * ** ** * * * * * ** * * * * *** ** * * ** * * *
* *
* * ** *** * * * * = * * * **** * *** * **** * **
**
* * * ***** * ** * * * ** = i * ***** *** ** * * * *** * **
* = *
* = * * * * * * * * ** * ** **** * * * * ** * * ***
**
* ** * * ** ** * * * * * * * *** * * ** *
*
* * ** ** * * * * * **** ** *** * *


*


** *
answered by (-276 points)
0 like 0 dislike
Hidden content!
***** ** *** **
* * **** * * * *****
* * * *** ** * *
* *
*
* * * ** * *
** ** ** * *** *** *** * *

* * *
* * *
*
*
* * *
* *
* * *
*
** **** * * * *** i * ** = i * * = i * * * ** * ** * * * * ** *
*
** * * * ** ** * * * ** ** * **** * * *** *
* *
* ** * * * * * * * * = * *** * * * * * ***** *

* * * * ** * ** * * * * ** = i * ** ** * *** ** * * * ** * *
* = *
* = ** * * * * * * * * * * * * * * *** * **

* ** * * ****** ** * * * * * * * * *** * ** * ** **
** *
**** * * * * * * ** * * ** * * * **** * * ** * *****





****
answered by (-276 points)
0 like 0 dislike
Hidden content!
** ** ** ****


*

{
* * *** *** *** * ** a, b, c, n;
* ***** ** * * * ** * * * ** ** * ***
**** * ** ** * * * ** **** ** * **


** **** ** ** = 1; c * ** n; c++)
* * * ** ******* *** = 1; a * ** c; a++)
*** * ** *** * ***** = a +1; b * * * c; b++)


* * * **** * (a * a + b * b == c * c)
** * *** * * * ** ***** * ** %d * *** **



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.127.120
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 3.6k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.9k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.9k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 8.4k views
12,783 questions
183,442 answers
172,219 comments
4,824 users