0 like 0 dislike
1.2k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.2k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* ** * * * **** * * *** * * ** ** * *** * * * *

    for(i=3; i<x ;i++){
* * * ** ****** * * *** * * * * ***** * *** j<x-i ;j++){
* * ** *** * * ** **** *** *** * * * * ** * * * * ** * ** **** ** k<x-i-j ;k++){
*** * ** ** *** ** ****** ** **** * *** * * ** ** * ***** ** *** * * * * **** * * ** i*i + j*j == k*k ){
**** *** **** ** * * *********** ** * * ** ** **** * * ** ** * *** ** ** ** ** * * * * ** ** * *** * * ** * **** * *
*** * ****** *** * * ****** * * *** * * ** * **** * *** * * * * * * **** *** * ** ******** ** ** *** ** * * * ** ** ** ** * **** * *


* * * *** * ** * ** ** ** * ** * ** * * * * *** ** ** * ** **** * ** * *** ** ***** *** * * *** *** **** %d %d",i,j,k);
** **** *** *** * ** *** * *** * **** ** ** *** * * ** * ** * ** **** * **** ** * ****** ** *


*** * * ** * *** *** * * * * * * * ******** * * * ** * ** ** * * *** *** * * *****



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* ** * ** ****** ******** *** x,i,j,k;
* * * ** * **** ** * * *** ** **** * **
* * * * *** **** **** * * * i<x ;i++){
* ***** * * ** * * ** * * * ** ****** * *** j<x-i ;j++){
* * ** ** ** * *** * *** *** * * * ** * ** * ** * ** * ** ****** k<x-i-j ;k++){
*** ** ** * * * * *** ** * ** **** ***** * *** **** * ** * * *** * ****** **** i*i + j*j == k*k ){
* * * *** * * **** * ** ** **** *** * * * * *** ** * ** * * ** ** * *** * ** * * ** * ** * * *** %d %d\n",i,j,k);
**** * ** ** ** * * ** * * * *** *** ** * * **** ** **** *** ***** *** ** * *****
* * *** * * ** * *****



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* *** ** * *** * *
* * * * * * *
* ** * *** ****
* ** * *
*
* ** * * ****
* *** * * * * ** * * *
*
* * * **
* *
* **
* *
** * *

* **
*
* ** *** * * * i * * = i * * = i * *** * **** * *
* *
* ** * * * ** * * * *** ** *
* * *
**** * * * * * * ** * * * * * * ** = * * * **** * ** **** ** **** * **
*
* ** * **** ** * * * * * * * * * = i * * * * * ***
* =
** = * * *** * * * * ** *** * * * * ** **

** * * ** * * * **** * ** ** ** **** ** * * *
*
* * * * * ** * ** * ** * ** ** * * *
*

*
*
*
**
answered by (-276 points)
0 like 0 dislike
Hidden content!
*** *** *
** *** **** * *
* * ** **** *
* ** ****
*
* * *** ** *
**** *** *** * **

* * *
* *
* *

* * *
* * *
* * * *

* * *** * * **** i * * = i * ** = i * * ** * * * * *****
**
* * * * ** ** * * * * ** *** *** * * * ** ** *****
*
** * * * ** * * ** * = * *** ** * ** * ****** *
* *
* * * ** * * * * * = i * *** * ** *** * *** * ** **
* = *
** * = * ** * * ** * * ***** * ** ** *
* * *
* * * ** *** ** ** * * * ** * * **** * * *** *
** * *
* * ** * ** * * * * * * * * * * * * * ** ** * ****





* * **
answered by (-276 points)
0 like 0 dislike
Hidden content!
** *** * *** *


* *

{
* *** * ** * * * a, b, c, n;
*** ***** ***** * * * * * * * ** **** *** * **** ***
* ** * * * ** ** ** ******* ** * ***


** * * ** **** ** = 1; c * * n; c++)
* *** ************ ***** = 1; a c; a++)
*** * ** * ** * ** = a +1; b * ** c; b++)


*** ** * * ** * (a * a + b * b == c * c)
***** ** **** * * **** * %d * ** * ***



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.80.81
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 4.1k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.2k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.1k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 9.8k views
12,783 questions
183,442 answers
172,219 comments
4,824 users