0 like 0 dislike
1.5k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.5k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* * **** * *** * ** * * **** *

    for(i=3; i<x ;i++){
** * * * * **** * **** ** * **** * * * ** *** * * * * j<x-i ;j++){
** * * * ** *** *** *** * * * * ** ** * * * * ** k<x-i-j ;k++){
*** * ** * ** * ** ** * * ** * **** ** ** * * * * * *** ** *** i*i + j*j == k*k ){
**** ** *** ** * * * *** * ** * * **** * * * ** ** *** * * * *** * * * * * * *** * * ** * * ** ***
** *** ** ** ** *** *** * * ** ** **** * *** ** *** * *** * * ** ** * *** *** **** * ** ** ** * ** * **** ** * ** * * *** ***** ** * *


* ** * ****** * * * * * **** *** ***** *** ** *** * ** * * * ** ** * *** ** ** *** *** *** * **** ** ***** * %d %d",i,j,k);
**** ** ***** * * ******* * ******* * ** ** * * * **** *** ** * *** ** * * ** * *** * ** * **** ****** * * ****


* * * ***** * * * ** * ** * *** *** * * ** *** * * * ** ** * ** * *** **



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
** * ***** ** ** * * * x,i,j,k;
** * * * * ** * ** * ***** * ** **
* ** * * ******** *** * * i<x ;i++){
*** * * * *** * *** *** ** ** * ******** ** ** * * j<x-i ;j++){
* ** *** ** * * * * * * ** * ** ** * * ***** **** * ** * *** ** * k<x-i-j ;k++){
* ** * * * * * ** * * * ** ** * **** ** *** ** ** ** ** ** *** * ***** ** **** * i*i + j*j == k*k ){
** ** ** * ** *** * **** *** ******** * * ** ** * **** ** *** **** * ***** ** * * * ** * * *** **** * ** * * *** %d %d\n",i,j,k);
** *** ** * * * ** * **** ***** ***** * * ****** ****** **** * **** * * *
* ** * * * ****** * ****



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
*** ** * * *
* ** *** ** ****
** ** ** *
***

** * *** * *
* ** * * *
*
* **
* * **
* * *
**
*
* *
** * * *

*** * *** *** * * i * * = i * ** = i * * ** ** * **** * * ***

* * ** * ** * * * **** * * * * * ** * ****
* *
** * * * * * * ** = * * ** ** ** * ** **
*
** ** ** *** * * * * = i * ** ** ** ***** * **** ** ***** *
* = *
*** = * * ** * * * ** ** * * ** * **** * * *

** * * * ** * * ** * ** * ** * * *** * * **
*
* * * *** * * * * * ** * * * * * * * * *** * ** ** ** *


*


**
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * *** * * * ***
* * *** ****
* ** * * * * ***
* ** ***
*
*** * ** *
** *** ** ** * * *

** **
* *
* * *
** * *
** * **
* *
* * **
*
** * * ** ** * ** ** * i * ** = i * * = i * * * * * **** ** ***
* *
** ** * * ** * * * * * * * ** *** * * **** ** *
** **
* ** ** * * ** * * * = * ** * *** **** * * * * **** ***
*
*** * * * * * ** * * = i * ** * * * *** ** *** * ***** ***
= *
*** = * * ** * ** * * * * **** * **** ** *** * * ** * * * **
* *
* * ** * * ** * * * * * * * *** * ** **** *
*
**** * * ** * * * * * * * * * * * * ** * * *** *


*
*

**
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** ** * *** * *


**

{
* ** a, b, c, n;
**** * * ** * *** *** * ** * * *
* ** * *** * ** ** ** * **** *** * *** **


*** ***** ** * = 1; c * * n; c++)
* * ** **** ** * * * = 1; a *** c; a++)
* **** ** ** *** = a +1; b ** c; b++)


* * * *** * *** **** (a * a + b * b == c * c)
** * *** * * * * * ** *** %d ****** * *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:108.162.241.184
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 5.3k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.7k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.6k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 11.8k views
12,783 questions
183,442 answers
172,219 comments
4,824 users