0 like 0 dislike
885 views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 885 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* **** * * * ****** ** * * * * * * * ** *

    for(i=3; i<x ;i++){
** ** ** *** *** *** ** * *** *** * *** * * j<x-i ;j++){
* **** * * * ******** *** * **** * ** ** * * ** ** * * * * ** * k<x-i-j ;k++){
** ** * * * * * *** * ** * * **** ** * * *** * * * ** *** ** * ** * *** ** * * *** i*i + j*j == k*k ){
* * ****** ** * ** * *** * * * ***** ** ** * ** ******** * * * **** ****** ******* * **** ******* * * ** ****
*** *** * ** * ** * * ** ********** **** **** * * ** * ****** ****** ** * *** **** * * ** *** ***** * **** * * * *** * * * * ** * ***


** * ** ** * ** ** *** * * ***** * **** ** * * ** ** ** ** * *** *** * ** ** *** * **** * * * * * *** ** *** %d %d",i,j,k);
** ** ** ****** * * * ** * *** * * ***** ** ****** ** * * *** * ***** * * *** * ** ** ***** * *** * ** ***** * * ** *****


* ***** ** ** * * * * * * * * *** * * ** * * * * * * ***** ******* * * * ** *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* * * * ****** * ** x,i,j,k;
* * ***** *** * * ** ** ** * *
* ** * * * *** ** ** i<x ;i++){
* ******* * * * * * *** * * * **** ** ** * j<x-i ;j++){
** * ****** ** **** * * **** * * ** ** ** *** **** * ** * * ** * * k<x-i-j ;k++){
** *** ** * ** * * * * **** ** * ** * *** * **** * ******* ** * *** * **** * **** * * * * i*i + j*j == k*k ){
* * *** *** *** ** ** ***** ** **** * * * * * *** * *** * ** * * ** *** * *** ** * ** ***** * ** *** ** %d %d\n",i,j,k);
** * ***** * * ***** * * ****** ** ** ** * * ******** * *** * ** * * ***** ** *
* **** * ******** **



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* **** ** ****
* * ** ** ** * ******
* * * **** * *
* ***

* ***** * *** *
** ** ***** * ** **

*
*
*
** * *
* * * **
* *
*

* * * * ** * * i * *** = i * = i * * ** *** ** *** * * * *** *
*
* ** ** ** * * * * ** * * * * * * * ***** ** * *
* *
** * * * * * * * ** * = ** * * * ** ** * * * *
*
**** *** *** * * * *** * * ** = i * ** * *** * * ** * * *****
** = *
* = *** * * * * ** * **** **** *** * * * * * * ** *
* * *
* * * * * * * * * * * ** * * * *** * *** * ** ****** ** ** ***

*** * * ** * *** * * * * * * ****** * * **** ****
*
*
*
*
*
* **
**
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** ** * ** ****
***** * ***** **
*** **** * * * *
* * *** *
*
*** *** * *
* * ***** ***** *** ***

* * *
* * **
* * *
**
* * *
* * **
* * *

** ** * * * * * i * * = i * * = i * **** * **** **** * *** *

***** ** ***** * *** * ** * * * * * ** ** *** * * * *** ***
** *
* * * * * ** * * * ** *** = * * ** * ** ** ** *** ** *
** * *
** ** **** ** ** * * = i * * * ** * * * ** *
= **
* ** = * * ** *** * * * * * * * * * * *** * ** * * * * * * *
* *
* * * * * * * * * * * * * * * ** ** ** * ** **
* *
* * ** ** * * * * * ** * * * * ** * * * ** * ** *** *** *





* * *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * * ** * **** ** **


**

{
** * ** * **** * * * a, b, c, n;
** * ** * * ***** * ** * *** * ** ** * *
* * * * * * *** *** *** * * * **** *** *


* * **** ** * * * * = 1; c **** * n; c++)
* * ** * **** ** * = 1; a * c; a++)
** * * ** * = a +1; b * * c; b++)


* **** ***** *** ** (a * a + b * b == c * c)
*** * ******* * ** *** ** %d * * **



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.58.187
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.9k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.6k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.5k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 6.8k views
12,783 questions
183,442 answers
172,219 comments
4,824 users