0 like 0 dislike
496 views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 496 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* *** *** * * ****** ** **** * * *** * * *

    for(i=3; i<x ;i++){
** ** * * ** ** * ** * ** **** **** j<x-i ;j++){
**** ** * * *** ** **** * * * ** * * **** *** * * ** *** * ** * * k<x-i-j ;k++){
** **** *** ** * * * ** *** * * * * * ** * ***** * * * * * * * * * **** *** * * *** * i*i + j*j == k*k ){
*** * * * ** * ** *** *** ****** ** ** ** * * * * *** ** * *** * * ** * ** * * * ***** * *** * *** ***** *** **
** ** ** * *** * *** ** *** * * ** * *** ** * * * * * * ** * ** ****** * * * *** * ** ** ** ***** ****** * **** ** ** *** *** * * ** ***


* * ** * ** ** * ** ** * ** ** *** ** ** * * **** ****** *** ** ** * * * **** * *** * **** **** ** ** * %d %d",i,j,k);
**** ***** * **** ** * * * ** ** * ** ** * ** ** *** ** * *** * * * * ** * ** * ***** * ** **** **


* *** ** ****** * * * * * ** * *** ** * *** * ****** ** * **** *** *** * *** * *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* *** **** * ** ** x,i,j,k;
* * * * ** ** ** * ** * ***** * * ***** **
** * * ** ** * * ** * * ** * * i<x ;i++){
* * ** **** **** * ** ** * *** *** * ** * j<x-i ;j++){
* * * * * * ** * * * * * ** * * * * * ** *** *** ** ** ** * * k<x-i-j ;k++){
** ** * * ****** * ** ***** *** * ****** * ** * * * * **** * ** *** * ** * *** i*i + j*j == k*k ){
* * * **** ** * *** * ***** * * ** * ** * * ** * ***** * *** ** * * * * * * *** ** * * *** * * * * * **** * *** %d %d\n",i,j,k);
** * * *** * * * * * * * *** * ** ** * * * * ** **** *** * ** * * **** * * ****** **
* ** ** ** * *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
*** ** ** * ***
*** **** * *
* * *** * ***** *

*
** ****** ***
* * * * * ** * * **
*

**
* * * **
* *
* *
* * *
*

* ** ** * * * i * = i * = i * * ** * * * * * * *
*
*** * * * * * * * ** ** ** **** * *** * **
* *
* * *** ** * * = * *** ** * ****** * * *

** * * * * ** * * * = i * ** * ** * ***** **
= *
**** = * ** ** *** * * * * * ***** * ** * * * * ** **
**
* * * * * * * * * * * * * * ** * * * **** * * * ** *
*
* * * *** ** * ** * * * ** * * *** * * * ** * * ****

*


*
* * *
answered by (-276 points)
0 like 0 dislike
Hidden content!
**** * * *** ***
* * ***** *
* * * * ** *****
* * * *

* ** **** *** ***
* * ** ** ** * * ** *

* *
* *
*
* *
* * *
* *
* *
*
* * * ** ** * i * * = i * = i * ****** * * * *** **
* * *
* * * * * ** * * * * ** * * * * ** * * * * * *** *
* *
* * * *** * * * ** ** * = * ** * * **** ** ** ** ****
*
* * * * * * * * ** * * * * * = i * **** * * * ***
* =
** * = * * * ** * * * ** * * * * * * ****
* *
* * * * ** * * * * ** * * ** * * * * * ** ** ** *
* *
* * ** ** * * * * * ** * * * * * ** ** * **

*


*
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
*** * * *** * *


**

{
** * * ** * ** a, b, c, n;
* * ** *** * * * ** * ** ** *** * ** *
* * * *** * **** * * **** ***


* * * * ***** = 1; c ** ** n; c++)
* * ** ** **** ** = 1; a * * c; a++)
** ** ** * ** = a +1; b * *** c; b++)


** ** * * ** * * ** * (a * a + b * b == c * c)
* * * * * *** * * * * * %d ** ** *** ***** *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.58.80
©2016-2024

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.6k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 949 views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 970 views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 4.5k views
12,783 questions
183,443 answers
172,219 comments
4,824 users