0 like 0 dislike
683 views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 683 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
*** * * * *** * * * *** * * **** ** * *

    for(i=3; i<x ;i++){
*** * *** * * * *** ** ** ** * * *** * * j<x-i ;j++){
* * **** *** * * * ** * **** **** ** ** * ** * * * *** ** * * k<x-i-j ;k++){
** * * ** ** * **** ** *** * ****** **** * * * * ** * **** * * * * ***** ** * i*i + j*j == k*k ){
** * *** ** ** * * * * *** ** *** * ********** * ** * ** * ** *** **** ***** **** * *** * * ** * * * ** ** *
** * * * ** * * * *** **** ******** ** * ** ** ** **** ** ** * *** * ** **** * * *** * ** * * * ****** * * * ** ****** ** ** * *** ** *** ** * *


** * *** **** ** ********* ** ** * ** **** * * *** ** *** * * * ** ** * * ** ** * ** ** * *** * * **** * ***** %d %d",i,j,k);
* * * ** ** * * * * **** ** **** * ** *** * * * **** ** * *** **** * ** * ** * ** * *** *** ** * * * *


** ** ******* * * ** * *** *** * * * * ** ** **** * * ***** * * * ** * **** * * **



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
**** * ** ** **** *** * x,i,j,k;
**** ** * * ** ** * * * * * * * ** ** * * **
** * * ******* * ** ** i<x ;i++){
* *** **** ** ** * * ****** ***** * * ** *** * j<x-i ;j++){
* * ** * ** * ** **** * ** * ** ** *** ***** ** * ** * * * * * * * k<x-i-j ;k++){
* *** * ** * ***** * ** * * * ** * * * *** * ** ** ******* *** * * * * **** ** * i*i + j*j == k*k ){
* ** * * * * * ** ** * ** * * **** * * ** * *** ** **** *** ** ** * ** * ** * ** ** **** *** * * * *** ** *** ** * * * ** %d %d\n",i,j,k);
** * * ** ** * * ** *** **** * **** *** ** * * * *** *** ** * * * * *** *
* * * ** ** *** *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
** * * ** **
**** **** * * *** * *
** * * * ** *
* *
*
* *** **** *
*** * * ******* * * ***
*
* * *
* * * *
* * *
**
*
* **
** * *

** * *** * * * i * *** = i * = i * * ** * ** ** ** *** **
*
**** * * ** ** *** * ** * * ** * *** *** * * *** **
*
* * ** ** * ** * * * * = * ** * ** * * ** ** * * *
* *
* ** **** ** ** * * * * * * = i * ** **** *** * ** ****
* = **
* = ** *** *** * ** * * * * * * ** * * **** ******
** *
* * * ***** * *** * * ********* *** ** * **
*
** ** * * * * ** *** ** * * * * * *** * * * **** *** *
*

*


*** *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
** ** *** ** **
** * **** ** * *
** * ** * * ** ***
*** *
*
* *** **
* ** *** * ***

* * * *
* * *
* * * *
* * * *
* *

** * *
*
*** * ** *** * ** ** i * * = i * = i * ** * *** * ** *** *****
*
* ** ** * * * * * * ** * ** * ** ** * ******** ** **
* * *
* ** ** * * **** * ** * = * * ** ** * * ** * **
* *
* * * ** ** * *** * * * * * = i * * * * * *** *****
* = *
* = ** * ** * * * * * ** * * ** * ****
*
** ** ** * * ** *** * ** * ** * * * *** *
** *
** * * ** * * * * * * * * **** **** ** ** ** * *** *** **


*


** *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
*** **** *** *


** * *

{
* * ******* * a, b, c, n;
* * ** * * * * *** ***** **** ** *** * * **
** ** *** ** *** ** ** * * ** *** * *


* **** * * ** ** = 1; c ** * n; c++)
*** * ******** ** * = 1; a * * c; a++)
* * *** * * ***** = a +1; b **** c; b++)


* ** * * * *** * ** (a * a + b * b == c * c)
* * * ** * * * ****** * %d ** * ** *** *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.100.33
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.2k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.3k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.2k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 5.7k views
12,783 questions
183,443 answers
172,219 comments
4,824 users