0 like 0 dislike
1.7k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.7k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
** ** * * ** * * * * ** ** * * *** * * * ****

    for(i=3; i<x ;i++){
* * * ****** *** * ** ** ***** * * * * ** *** j<x-i ;j++){
* ** * ***** * ** *** ** ** ******* * * * * ***** * **** * ** *** *** *** k<x-i-j ;k++){
**** * *** **** * * * ** ** * ** * ** ** * ****** * ** * * ********** **** *** * * *** * i*i + j*j == k*k ){
* ** ** ** ** ** ** * * * ** ** ** * * ****** ** * * * ** * * **** * ** ** * * ** * ** * ** * * * *** * *****
** ** *** * ** * * * *** * **** * ** * * * * ** * **** ***** ** * *** * * * * * ** * * * * *** * * * * *** * ** * * **** * * ***** * ** ** *


* ****** * * * * **** ** * * ** ** ********** * ** * **** * ** ** ** * * * ** ** * *** ** * ***** * * ** **** **** * * %d %d",i,j,k);
* *** * ** **** * * ** * * *** * ** *** * * *** * * * *** ** *** *** ** *** *** * * * ** *** * * ** * * *


** * ******* * * *** ** ** *** ** * * *** * * ***** *** *** * **** * ** ****



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
** ****** * *** **** * x,i,j,k;
* ** * **** * ****** * * * ** ** *
****** *** ** * ** * * i<x ;i++){
* ** *** *** * * ** * *** * * * * ** * **** * * j<x-i ;j++){
** * ***** ** *** * ** * * *** * * ** ** * ** * ** ** *** **** ** * k<x-i-j ;k++){
* **** *** ***** * * * * * * * **** **** ** ** * * ** * ********** ** * ***** * ** i*i + j*j == k*k ){
*** * * ** **** **** * **** ** * * * *** ** * * ** * ** * *** * * ***** * * * ** ** **** ** *** ** **** *** * * * * %d %d\n",i,j,k);
* * ** ** * * ** * * * *** ***** * * ** * ** * ******* * * * ** ** * * ***
** * * ** * * ** *** * * **



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
** * * * ** ** *
** ***** ** **
* ** *** *
** * *

* ** ** * * ***
**** * *** * ** * *
*
* * * *
* *
* *
* * *
*
* * * *
* *

* **** ** * * i * * = i * * = i * * * * * **** ** * **
* *
* * * ** * * *** * ***** *** * ** *
* *
** * * * * * *** * * * * * ** = ** * *** ** * *****
*
** * * ******* * * * * ** * * ** = i * * * ** * * * ** ** ** * *
= *
** * = ** *** * * * * * *** * ** **** * *
* *
** * * * * *** * * * ** * *** * * * * **** * * * *
* **
* * * * ** * * * * ** * * * ** * * * **** * * ** *

*
*

*
* **
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * * *** ** ***
** * * * * * * * *
*** * ** * * ** *
*** *

** * * **
* ** * * *
*
* * **
* *
**
* * * **
** * *
** *
*
*
* * * ** * * * i * = i * * = i * * * * ** * **** ** **
* **
* * * * * * ** * * ** * *** *** * * * *** * *
*
** * * * ** * * * * * * = ** * ** * * ** ** * * ** ** **
*
** * * * ***** ** * * * * * * = i * *** ** * ** * * * * **
= *
* *** = * * ** * * * * ** **** ** * * ** * * *
* *
*** * * * * * * * * * * * *** * * ** * *** * * *
* *
*** * *** ** * * * * * * * *** ** ** ** ** * * **




*
* *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * ** ** ** *


**

{
** *** * * * a, b, c, n;
*** * * * * *** * * * **** * * * ****
** * * ** * * * ***** ** ** ** ** * *


* * ** ** ** * = 1; c **** n; c++)
* *** *** *** ** = 1; a * * c; a++)
*** * *** ** * * ** * = a +1; b * c; b++)


* ** * *** ** * (a * a + b * b == c * c)
* * ** ** * ** * **** * %d ** ** * * **



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:104.23.243.165
©2016-2026

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 5.9k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.9k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.9k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 12.7k views
12,783 questions
183,442 answers
172,219 comments
4,824 users