0 like 0 dislike
1.4k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.4k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* * ** * ** *** * ** * * ** ** **** *

    for(i=3; i<x ;i++){
* * * ** * * * ****** * ** ** * ***** * * j<x-i ;j++){
* * * * * * ** ** ** *** **************** * * * ***** *** * ***** k<x-i-j ;k++){
** * * **** * * * *** * *** * ** ******* *** ** * ** * *** * * * * * *** * *** ***** i*i + j*j == k*k ){
* ** **** ** ** * * * *** *** ** * *********** * ** * ** * * * ******* * ** * ** ** * * * **** * * *****
* * * ** ** * * * ** *** ** ***** * * ** *** *** ** ** ** **** ****** * * ******* ** *** * ** *** ** * ** ***** * ** * * ** * ****** * ****** * * ***


** ** * ***** * * * *** ******* ******* ** * * * * * * ** * ** * ** **** * **** * *** * *** * ** * ** * %d %d",i,j,k);
******* * *** * ** * ** * * * *** * * ** ** ********* ** *** ** ** * * * * * * * ** *** ** * ** * * ** *


** * * * * *** **** ** ** * * ** *** *** *** ** * ** ** * ** *** ** * *** ** * ** **



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
** ********** * * * * x,i,j,k;
* ** * * *** * **** ***** *** **** ** ******
**** **** **** * * *** i<x ;i++){
** * * ***** * **** * * * ** * *** * ** *** * * j<x-i ;j++){
** ** ** * ***** ***** * ** * ** * ** * ** *** ** *** * * * ** ** * *** k<x-i-j ;k++){
*** ** ** ** * * * **** *** * ** * ** *** ******* ** * * * ** ** * ** ** ** * *** ** *** i*i + j*j == k*k ){
* ** *** **** * ** *** ** * * ** **** ** **** ******* ** * * ** * ** * **** * * *** ** ** ** **** * * * * * %d %d\n",i,j,k);
**** ** *** * * * ** **** *** ** * * **** * ** ** * **** ** * * **** ** * ** * *
** *** ** * ** * *****



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
*** ** **** *
* * ** ** * **
*** ** ** **** *
* *
**
* ** ** ** ** * ***
*** * *** **** *** **** *

*
** *
* * *
* * *
* *
* ***
* *
*
** * * *** * * * i * = i * = i * * **** **** * * * * ***
*
* * * ** * * * *** * * * * * * **** **** * * * ** ****
*
*** * * ** * * * * * * * * * = * ** * * * **** ** ** *
* * **
***** * ** * * * * * * * * = i * *** * *** * * * * * * * *
= *
** = ** * ** * * * ** * * * **** * * * ** * ****
*
* * * * ** ** **** * * * * * * * * * * * ** * ***** * *
*
** *** ** * * * * ** * * * * * ** * * * ** **


*


***
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
** * * * * ***
* ** *** * * **
** *** ** * * **
* * **
*
* ** *
* * *** * ** * ** ** ***
*
* *
* *
* *
* * * *
* * * * *
**
*

* *** ** ** ** * * * i * = i * = i * * * * ** ** **
*
** *** ** * ** * ** * * ** ** ** * * ***** *
* *
** * * ** *** * ** * = * *** * * * * ** *** **
* *
* * * * * ** ** *** * *** = i * *** ** *** * ** * *** ** *
* =
* = * * * ** *** * * * ** * * * ** * ** *** ** *
* * **
* * * * *** * * * * ** * *** * ** ** * **
* *
**** * *** * * ** * * * * * *** * * * ** ** * *

*


*
* ** *
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * **** *****


**

{
** * ** ** * *** * * a, b, c, n;
* * *** ** * ** ** * * ******** * *
** **** ** * * ** * *** * * ****** ***


**** *** *** * ****** = 1; c ** n; c++)
** ** ** * *** * = 1; a * c; a++)
**** * * * *** = a +1; b * c; b++)


* ** *** (a * a + b * b == c * c)
* *** * * ** ** **** * ** ** %d ***** ** * *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.80.21
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 4.7k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.4k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.4k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 10.7k views
12,783 questions
183,442 answers
172,219 comments
4,824 users