0 like 0 dislike
1.2k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.2k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* * ** ** ** ** * * * *** **** ** ** * *

    for(i=3; i<x ;i++){
*** ** ** ** ** * * ** * * * * * * * * ** j<x-i ;j++){
* * * *** * * ** * *** **** * **** ** * ** * ** * * *** * * * *** k<x-i-j ;k++){
* **** *** * * * ** * * ******* * * * * * ** *** * ** * **** * *** *** * *** i*i + j*j == k*k ){
*** **** * *** * * ** ** * * ** * * ***** * * * ***** ** *** ** **** *** ** ** * * ** ***** *** * * ** ********** * * ***
** * ****** *** * ********* ***** * * ***** *** ** * ** * * * * * **** *** *** ***** ** *** * * ** * *** ** * ******** ** **** * * ** * *


* * * * * * ** * * ****** * * ** * *** * * ** ***** ** * * ***** ** *** ** * **** * ******* * * ** ** ** ** ** *** %d %d",i,j,k);
* * * * ** * * * * * * ** **** * ***** ********** * * *** *** * * *** ** * **** * ** *** ** **** **** **


* **** *** ** * ** *** ** * *** ** * ** ** *** * * * ** * * ****** ***** ** * ***** *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* * * ** * * * ** ** x,i,j,k;
* * ** * *** * ** ** ******** *** * * **
** * ** * ***** ** ** ** i<x ;i++){
* * ** * *** * ***** *** * * *** * * ** * j<x-i ;j++){
* ** * ** ** * ** * * *** * * *** * ** * ** * * *** * * ** * *** ** k<x-i-j ;k++){
**** * ** ********* **** * *** ** * **** * ** * * * * *** ** * ** *** * ** * ** *** * ** i*i + j*j == k*k ){
* * * * ** *** * ****** ** ******* *** ******** * * *** * * **** *** * ** ** * * ** ** ** ** *** * **** * %d %d\n",i,j,k);
*** *** * *** ** * * ****** * * * * * * **** *** ** * * * * **
*** * ** * * * * ** * **



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* * * * * ** *
** *** * ** * **
* ** * ******
** * ** *

* ** ***
** * ** * * * **

** *
*
*
* *
* * *
* *
* * *
*
** * * ***** * * * i * ** = i * = i * * ** ****** ** * * ****** *
* *
*** * * * *** * * ** * * * * * **** * * * ***
*
* ** * * * * ** * ** * * * = * * *** * ** * * * ** **** *
** *
* ** ** * * * * * * = i * ** * ** *** * * * * **** ***
= *
* ** = * * * * * *** ** * * * ******* * * *** ** ***
* *
** * ** * * * * * * * * ** ** * * **** * **
*
**** * ** ** * * * * ** ** * * ** * *** * * ** * * *

*


*

*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** **** ***** *
** ** * **** *
* * * * * *** ***
* ** * * **
*
* * * * * ** ***
* * * * * ** * * ** *
*
*
*
* *
*
* *
* *
* * *

* * * ** ** ** i * * = i * ** = i * * * * ** * ** * * *
*
* * * *** **** * * * * * * ** ** ** * * * * * ** *
* **
* * * * * *** ** * * * * = * **** ** ***** * * * **
*
* * *** *** * * * ** = i * * *** **** * * *** **** **
= *
** * = * * *** *** * * ** * * ** * ** * * *
*
** ** * * * ** * **** * * * * * * *** ** * ** * **
* *
* ** * * ** * ** * * * * * ***** * * ***** * ** *
*




****
answered by (-276 points)
0 like 0 dislike
Hidden content!
* **** *** *


*

{
*** ** **** **** a, b, c, n;
* ** ****** * ** * *** * ** * * *** * *
* * *** * ** ** ******* **** *********


** * ** *** ****** = 1; c * n; c++)
** **** ***** * * * = 1; a * ** c; a++)
* * * ** ***** * * = a +1; b ** c; b++)


**** *** * *** (a * a + b * b == c * c)
* ***** * * * ** *** ** %d * * * **



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:108.162.216.243
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 4.1k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.2k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.1k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 9.8k views
12,783 questions
183,442 answers
172,219 comments
4,824 users