0 like 0 dislike
885 views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 885 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* * ** * ** * * ** *** ** **** ** ** * ***

    for(i=3; i<x ;i++){
** * *** * * ******** * * * *** *** ** ** ** * * j<x-i ;j++){
** ** * ****** ** ** ** ** **** ** * * * * ** * * * ** * * ** **** k<x-i-j ;k++){
***** * * * **** *** *** * * *** * ** * ************ ** ** * * ** * ** * * * * **** * ** ** i*i + j*j == k*k ){
* * ** * * ***** ** *** * ** * ***** * ** * * ** ** * ***** * ** * ** *** ** ** ** ** ** **** * * **** * * *** **** * *
** ** ** ** ** * **** * * * * **** * ** * **** *** * **** * ** * ** ****** * **** ** ** * * *** **** * *** * ** * * ** ** * ****


*** * ** ** ** * * ** *** * *** * ** * * * * * ** * * * * ** ** * **** * ** ** * * **** ** * * ** *** * * *** %d %d",i,j,k);
* *** * * * * * ** ** * ** ** * *** * * ** * ** * * **** **** * **** * * *** *** * ** ** * * **** *


* * *** *** * * * ** * ** * * **** ***** * * * **** * * * * ** ** * * * **** * * ** **



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
** ** * ***** * * x,i,j,k;
** ** * ** * * * ** ** *** * ** **
* * * ***** * ***** i<x ;i++){
** * **** *** * * ** ******* ** *** *** * ** ***** j<x-i ;j++){
* **** * *** * * ******* *** * *** * ** *** * *** *** * *** ** k<x-i-j ;k++){
** ** ** * * *** * * * **** * * ** * ** * * *** *** * *** *** ** * * * * * ** * ** * **** * **** i*i + j*j == k*k ){
* * ********* *** * ** ** * * ******* * *** ** * *** **** ** * * * * * * * ** * ** ** * *** * *** * * * * ** %d %d\n",i,j,k);
*** * * * * *** * ** ** ******* * *** * * * * ** * *** * *** ** * **** *** * * ** * ****
**** ** *** ** * *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
***** * * * ***
** ****** * ***** *
* ** **
**

* **** * *
**** * * ** * ** **** **

* **
** *
* * *
* *
*
* *
* **
*
*** * * * *** * * i * ** = i * * = i * * * * * ** * **** * * **
* * *
* * * * ** * * * * * ** * * * * * ***** * *
*
* * * * **** * *** * * ** * * * = * * * * * * * *** * * ****

* * * ** *** * * * * * * * = i * * **** * ** *** ** **
* =
* * = * * ** * * * * * * * * * * * ****** * ** * * * * ** ** *
*
** * * * ** * * * * * * ** * ** ** ** *
*
* ** * * * * * * * * * ** *** * *** * ***

*
*


** **
answered by (-276 points)
0 like 0 dislike
Hidden content!
* *** * * * * * *
* * * * ***
* ** *** * *
*** ** ***
*
* * *** * * *
*** * ** * ** **** **

*
* * * *
* ***
* * * *
* * *
* * *
* * *
*
* * ** * ** * * i * *** = i * = i * * * ** *** * * ** **** *****
*
* ** ** * ** *** * ** * * * * * * * * **** * *
*
* * * * * * * * * * = ** * * ** * * ***
*
* ** * * ** * * * * * ** = i * ** * * * ** * *** *
** =
** = *** ** * ** * * * * ** *** * * * * * * * ****
*
** ** * **** * * * * * * ** * * * ** * **** *
** **
* * **** *** * * * ** * ** * * * ***** *** **** ***


*


** *
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * ****** * *


*

{
*** *** * ** * * a, b, c, n;
* * * ***** * ** *** ** *** *** ** * *
* * ** ***** ** ** * * ** * * * * * *


*** *** * * * ** * = 1; c **** n; c++)
* ** * **** * * = 1; a ***** c; a++)
* *** * *** * ** = a +1; b * * c; b++)


* ** * *** * * ** (a * a + b * b == c * c)
** ** ***** *** ** *** ** %d *** * **** * *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:108.162.216.62
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.9k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.6k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.5k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 6.8k views
12,783 questions
183,442 answers
172,219 comments
4,824 users