0 like 0 dislike
1k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* ** ***** *** *** * *** * * * * ****

    for(i=3; i<x ;i++){
******* * ***** * * *** * * ** * *** ** ***** *** * j<x-i ;j++){
** * * ** ** * *** ** ** *** ***** * * * * *** * * ** ** k<x-i-j ;k++){
* ** *** * *** * ** * * * * ** * * ** ** * ***** ** * * * * * * ** ** **** * * i*i + j*j == k*k ){
* *** * * *** ***** * * ** ** ** ** ** **** ** * **** * ****** * *** ** ** ** * * **** * *** * *** ** * *** ** ****
** ** ** * ** *** *** * * *** ** * ** **** * *** * * * * ** * **** * ****** * ** * * * **** * * * * ******** * * * *** * ** *** *


*** ** * ** * * * * ******* ****** * ** **** * ******* * ** * * * * * * * * * * *** * * * * * * ** * * * ***** ** ** *** * %d %d",i,j,k);
***** ** ** **** * **** * * * * ** * ** ** * * ** *** *** * ** **** ** * *** ** * ** ***** *** *** *


** * ***** * * **** * * * * * * ** * ** * * * * ** * * * * * * * ** * *** * *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* **** ** ** * ***** x,i,j,k;
* ** ***** **** **** ******* ** * ** ** ** *
* * * * *** **** * *** i<x ;i++){
***** ***** * *** * * * ** **** *** ** *** * * * * j<x-i ;j++){
** * **** ** * * *** ** *** ** * * * *** ** ** ** *** ***** * * ** * k<x-i-j ;k++){
** * ** * * * * * * ** * ** ** * * ** * * ** * * ** * * * * * ****** * * * * * i*i + j*j == k*k ){
**** ***** * ** * * **** * * *** ***** * **** * ** * * * * * * * * * * * *** * ** ******* * ** ** ** ***** %d %d\n",i,j,k);
* ** * ** ** **** * ** * ** * * * ** * * * *** ** ** *** ** * * * ** * * * ** ** **** ** * *
** **** * **** * * *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
*** *** ** * * ***
***** ** * ** *
* ** * * * *
* * *
*
** **** ***** *
* **** ** * * * ***
*
* **
* *
* *
** * *
* * *
*
* *
*
* ** * * ** * * i * ** = i * = i * * *** * ** * * **** *

** * * ** ** * * ** *** ** ** * * * * ** * ***
**
*** * **** * * * * = * * * ** * * * ** ** * *
* * *
*** *** ** ** * * ** * * = i * ** ** *** * * * ** *
= *
* ** = * * * ** * * * * *** * * * * ** * ** * ** ** *
*
* ** * * * * * ** * ** * *** * * * **
*
** * * *** * * **** * * * * * * * * * *** ** * * * * * *




*
* ***
answered by (-276 points)
0 like 0 dislike
Hidden content!
* *** * *** * * ***
*** * * * * *
* *** * * ****
* ** **
**
* ** **
* *** * ** * * **
*
* * * **
* *
** *
** *
*
* * *
* * * *
*
* * **** * * * * i * * * = i * ** = i * * ** * **** * * ** ****** *
*
* ** *** * * * * * ** * * **** ** *** ** *** *
*
** * ** *** * * *** * * * * = * * *** * * * * ** * *
* *
** ** * *** * * * * ** = i * ** ** * ** ** * * **
= *
** = * *** * * * * * *** * * * * * ** * * *
* *
*** * ** * * * ** * ** * * * * **** * ** ** * ***** ***
**
** ** * ** * * * *** * * * * * * * ** * * * * * ** ****
*

*

*
*****
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * * ** *


* **

{
* *** ** * * a, b, c, n;
*** * ** ***** ** ** * * *** ***
**** * *** **** ** **** *


* ***** * * = 1; c * * * n; c++)
* ******* * = 1; a * * c; a++)
** * ** * ** ** * *** = a +1; b * c; b++)


*** * ** * ***** (a * a + b * b == c * c)
**** ** ** *** * * *** ** %d ** ***** * *** * *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.194.155
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 3.4k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.8k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.8k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 8k views
12,783 questions
183,442 answers
172,219 comments
4,824 users