0 like 0 dislike
499 views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 499 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* * * **** ** * * ** * ** **** *** * ** *

    for(i=3; i<x ;i++){
* ** ** * * * * *** * * **** * * ** ** * j<x-i ;j++){
* * *** ** *** ** ** ** *** ** *** *** * ** *** * k<x-i-j ;k++){
* ** * ** ** *** *** * ** ** *** **** * * * *** ** * * * ***** ******* ** * ** ** **** i*i + j*j == k*k ){
* * * ** * * ********** * *** * ** ** * * **** * * ** ** *** * ** * ** ** *** ** * * ** *** * ** * **** **
* ** * * * * ** * * * * **** * ** *** ** * ** ** *** * **** * **** ** *** ***** * * * * * ** * ** * * * ****** * * * * **** * ***


** * *** *** ** * ** * **** ** * ***** ***** * * *** * *** **** *** ** * ** * * **** ** **** * ** ** ** * * ** * * %d %d",i,j,k);
** *** ********** * **** * * * * ** * * * ****** ** * ** ***** *** * * **** * ** ****** **** **** **** *


* * ** *** * ** ** * **** * * ** **** *** * * * * * ** * *********



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
** * * ** ** * ** x,i,j,k;
* * *** * * ** *** * ** * *
* * *** * ** * * ** * * ** * i<x ;i++){
** ***** * * * * ** * * * *** * * ** *** ** ** * * j<x-i ;j++){
** ** *** ** * * ** * **** ********* * * * * * * ** * ** k<x-i-j ;k++){
** *** ** * *** ** * ** * * * ** ** ** ** ********** ** * * * *** ***** * ** ** * *** ** * i*i + j*j == k*k ){
* ** ** * ** * **** ** ** * ** ** * * * * **** ***** * * ** * ** * ** *** * * ***** * ** * ** ** ** ** * * ** *** %d %d\n",i,j,k);
**** ** * * * ***** **** * ** ** ***** ** ****** * * * ** ** * ***** * * * * **** *** ** *
* * **** **** * *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* ** ** ** * * * *
*** * **** **
* * * * **
* ****
*
** * ** *** * * **
** * * * ** * * ** ** *

* * *
** * *
* *
*
* * *
* *
* * * * **

* ***** * i * = i * * = i * ** * ** **** ** ***

** * *** * * * * * * ** ** * * * ***** * *

*** *** * ** * * ** * * * ** = *** ****** * ** * * *****
** *
*** * * * ** * * * * * = i * ** ** ** * * ** * ***
** = *
**** = * * * * * * ** * * * * * * * * * * *** * ** * ** *
*
*** *** ** ** * * * * * *** * *** ** ** * **
* *
* * * ***** ** *** * ** * * ** * * * * * **** * * ** *

*


*
*****
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
** * * *
* ** **** * * ***
** *** * * * * *
* * ****
*
* *** ** **
** **** ** ** *

* * **
** * **
* *
*
* * *
*
* * **
*
* **** * * * i * * = i * ** = i * * ***** * *** *** * **
* *
*** * * * * ** ** * * * * * * * * * ** ** ** *** * **
*
*** * * ** * * * = *** * * * * * * * ** * ***
*
* * * ** * * * * * * * * * = i * * *** ** ** * * * **** *
= *
* ** = ** * ** * ** * * * * ** * ** **** * * * * *
* *
* ** ** * *** * * * ** ** * *** **
*
*** * ** * * * ** * * * * ** * * *** *** ** ** * ** * ***

*

*
*
*** *
**
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** *** * * ***


*

{
* **** ** *** * * a, b, c, n;
** * ******* *** * * * ** *** ** * * ** * ** *
***** * ** * ** *** ** * * * **** *


** * ** *** * * = 1; c ** n; c++)
***** ** *** * ** * *** = 1; a * * c; a++)
** * * = a +1; b ** * c; b++)


* * ** ** * **** (a * a + b * b == c * c)
* * * * * ** * * ** * ** %d *** **** * **



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:108.162.216.16
©2016-2024

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.6k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 961 views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 983 views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 4.6k views
12,783 questions
183,443 answers
172,219 comments
4,824 users