0 like 0 dislike
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 55 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* ** * *** * * ** ** ** ** * * ****** * *

    for(i=3; i<x ;i++){
* ** ***** ** *** * ******* ** * ** ** * * j<x-i ;j++){
** * * * ** ** * ***** ** * * * * ** * * * ** *** * * * ** ** **** k<x-i-j ;k++){
*** **** **** * * * *** * * * *** ** ** ** ** ******** *** ** ** * * ** ** * * ** **** i*i + j*j == k*k ){
** * ** * * * ******** ** **** ** ** ** *** * ** ** *** ***** ** * * ***** *** * *** *** *** * * **** * **
* *** * * **** * * **** **** * ** * ** * * * * ******** * ** * * *** ** * * ** ** * **** ** * **** * * * * * **** * ** * ** * *** * ** *** ***


****** *** * * * * *** * * * ** ** * * ** *** * ** * **** ** ** *** ** ** * ** * ****** ** * * * ** * ** *** * %d %d",i,j,k);
** * * * **** ****** ** * * * ** * *** * **** *** * * *** *** ** * * * **** * * ** *** *


** *** * * * ***** * * ***** * * **** *** ** ** * *** ********* * * * * * *** * * * *** *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* * * ** * ** * **** * ** x,i,j,k;
* ** *** ** ** * ** * * * * * **** * ***
* * ** ** **** * ** *** * i<x ;i++){
***** ****** ** * * ** * * * * ** * * * ** * * ** ** j<x-i ;j++){
* *** * *** * * **** **** ** * * * ** ** * ** * ** * * * * k<x-i-j ;k++){
* *** ** * * * ** * *** * * ** ** *** * * * * *** *** *** * **** * * *** i*i + j*j == k*k ){
*** **** * ** *** * * * *** ** **** ** **** ******* * * * * * ** ***** ****** ********* * * ** ****** * * * * ** * * * * * * %d %d\n",i,j,k);
** * * ** * * ****** * ** *** * *** * * **** * * ****** * ** * ** * * ** ** **
* ** * * ** ** * *** *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
** * *
* *** ****
**** * *** **** * ***
* **

* * *** * * *
** * * * ** * * ***** **

* **
* * *
*
* * *
* *
* *
* *

** * ** *** ** * * i * = i * * = i * *** ***** ***** * * * *** ***
*
*** * * *** * * * ** * * ** * *** * * * ** * ****** *
**
*** * * * ** ** * * * * * ** * = *** ** * * * * ** * * **
*
** * *** ** ** ** * * * * = i * *** * * **** * *** ** * * *
= *
* = **** * ** * * * * ** ** * ** * * ***
*
* * ** ** ** ** * *** * * * * * ** * ** * * * *** **** ***
*
* * * ** * ** ** * ** *** * *** * ** ***

*
*


* * ** **
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * * *** *
** **** * *****
* ** * *** *** **
*** * * * *

* * ** ** *
** * ****** * ** *** * **

* * *
* * *
* *
* * *
* * **
* *
*

* * * ** * i * ** = i * ** = i * * ** * * *** ** * **** *
*
* * *** ** * * * * * *** * * *** * * * *** * **
*
* * ** * * * * * * = ***** * ** * ** * * ******

**** * * * ***** * * ** = i * * * * * * * ***** * * ***
= **
= * * * * * * * * * *** ** * * ** *
*
* * * ** * ** ** * ** * * * ** *** * ** * ****** *
** * *
*** ** * * * ** * * * * ** * *** * * ** * * * *

*



*** *
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * * * *** **


**

{
** ** * ** ** **** * a, b, c, n;
* ** *** * * *** * *** *** ** * * * * * *
* * ****** ** **** ** * ***


** * *** * ** * = 1; c * *** n; c++)
*** * ** * *** * * = 1; a * * c; a++)
** *** ** ** **** * = a +1; b *** c; b++)


* **** * ** * (a * a + b * b == c * c)
** * ** * *** * *** *** * *** * %d * ** * *** **



}
answered by (-74 points)
Get it on Google Play Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.63.13
©2016-2019

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 55 views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 49 views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 50 views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 122 views
8,792 questions
72,361 answers
47,172 comments
2,043 users