0 like 0 dislike
489 views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 489 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* * * * * * * *** ***** * * *** * *** ** *

    for(i=3; i<x ;i++){
****** ***** * ** **** ** * * * ** *** * * j<x-i ;j++){
** * ****** *** ** ** *** *** *** * * **** * ** * ** ****** ** * ** ***** * k<x-i-j ;k++){
* *** * *** ** ** **** * * * * * * * ** ** *** ** ** * * ** *** ** **** ** i*i + j*j == k*k ){
** * ** * * ** * **** * ** ** *** *** ** * * * * * * * * ** * **** *** * * ** * ** * **** *****
* ** * * *** * **** ** * * * * ** * **** * * *** ** * ******** ** ** * * * * *** * * * * ** **** ********** * * * * *


** ** ** *** * ** * * * * *** ** *** **** * * ** ** * ** ** * * ** * * * * **** ** * * * * **** *** * * * %d %d",i,j,k);
* ** * ** * * *** * * ** * * * * * ***** *** ** *** **** **** * * * * *** *** * *** *


** * ** ** * * * **** ** *** *** ** ***** *** ** * * ** * * * ** ***** * * * ***



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* ** **** * * *** ** * x,i,j,k;
* * * *** ** * ***** * * ** * * ** * * *
* * ** ** ** * ** ** * i<x ;i++){
* * ** * * * ****** * * * ** * ** * *** *** ** j<x-i ;j++){
** * * * ** * ** ***** * ** ***** ** * * **** * ***** ****** ** * ** ******* k<x-i-j ;k++){
* * * ***** ****** ** ** ** **** * * ** ***** * * **** * *** ** *** ******** ***** i*i + j*j == k*k ){
* * ** ** ****** *** ** * ** * * * ***** *** ***** ** ** ** * *** * ** * ** ** * * *** ** * * * * * ** ** * * *** ** %d %d\n",i,j,k);
* **** ** *** * **** * * ****** * * * * * * * ** * * * * *** * ** **** * ** *** *
* * * ** *** ** * *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
** ** ** **
* ** ** *** * *
* **** * **** *
* * **
*
*** ** * ** **
**** *** ** * ** *

* *
* * * *
** *
* *
* * *
* *
*
*
* * * * *** ** i * ** = i * * = i * *** *** * *** * ** **** **
* *
* * *** ***** * ** * * *** * * * ** * * ****** ** **
*
* ** * *** * * * * * * * * = * * * **** *** * * *** ****
* **
*** **** * * * * * = i * *** ** *** * ** * *** ***
=
* * = * * ** * * * * * ** * ** ** * * * *** * * ****
** *
**** * * **** ** ** * * * * * ** ** * * ***
**
**** * * ** * * * * *** * * * * ******** **

*


*
* ** * *
answered by (-276 points)
0 like 0 dislike
Hidden content!
*** ** ** ****
** * ***** ********
* *** ** * * ***
** * ***

* * ** ****
******** * ** ***** **

* * **
** *
*
*
* *

** *
*
* * * * * i * * = i * * = i * * **** ** * * *** * * ***
* *
** * * * ** * * * * * * * * * * * *** *
* **
* * *** * ** *** * * * * = * * * * * * *** * * **
*
**** * **** * * * * * * = i * * * * * * * * ** * *
= *
** * = * ** * * ** * * ** * *** * ** * * * ** *** **** **
**
* ** * * ** * * * * * * * * *** * *** *** * ******** ** **
* * *
* ** * * * * * ** * * * * **** ******** * *
*
*

*
*
**
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** * *** *


**

{
*** ** ***** * * a, b, c, n;
** *** ****** **** * ** * ** *** * * * **
* ** * ** ** *** **** * **** ** * *


* ** **** **** * *** = 1; c ** * n; c++)
** * ** * * ** **** = 1; a * c; a++)
* * ** * * * ** = a +1; b **** * * c; b++)


* * ** * * ** (a * a + b * b == c * c)
** **** ****** * * * * ** %d * * ** * *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.7.35
©2016-2024

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.6k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 938 views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 958 views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 4.5k views
12,783 questions
183,443 answers
172,219 comments
4,824 users