0 like 0 dislike
806 views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 806 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
** * *** *** * ** * * ** **** * * * * *** ** ** **** *

    for(i=3; i<x ;i++){
*** *** **** *** * * *** ** * ** ** ** * **** ** ** * j<x-i ;j++){
* * *** ***** * * * *** ** ** **** * * ***** *** * **** * * *** k<x-i-j ;k++){
*** * ** * ** * ** * ** **** *** ** ***** * * ** * * * * * * * *** ** **** **** ** *** i*i + j*j == k*k ){
***** ** ******* ** * ** * **** ***** * *** ** * ** * * * *** *** * * * * ***** * * *** ** * * * * * ** * ** ** * ***
* * * * ** * * ** * *** * * * *** **** * * * * ** ** ** * ***** * * ** **** **** * * ** * * * * * * * * **** * * * * ** * ***


* *** *** ** * ***** * ***** *** * ****** * * * * ** ***** ***** ** ** ***** * * ** ***** * * ** *** * * * * * **** * %d %d",i,j,k);
**** *** * * * *** ** *** * * ** ****** **** *** * *** ** * ***** ** ** * ** * * * ** *** * *


*** * **** ** ***** ** * * * * * * * * **** *** ** * ** ** * ******* ** * * * * ** *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
** * * ** *** * **** ** * * * x,i,j,k;
* * * * * * *** *** ** * * *** * * **
* **** * * * * ** * * ** i<x ;i++){
** * **** * * * **** * *** ** * * * j<x-i ;j++){
* * ** **** ***** * *** * ** * *** ** * ** *** ** * * * k<x-i-j ;k++){
* ** ****** ** ***** * * ** * * ***** * ** *** ** ** ** ***** ** * * * * * * * * ** i*i + j*j == k*k ){
**** ** ** ***** *** ** **** * *** ** ****** ** * * *** **** * * ** ** ** ** ** *** ** *** * ** **** ** * * *** * ** ** %d %d\n",i,j,k);
**** *** *** *** * * ** * **** ** *** ** ** *** * ** **** * ** * ** * * ** * * ** *
*** ** ****** ** * *** ****



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
**** *** * *
* * **** **** ****
** * * ** * **
*****
**
** *************
**** ** * ** * * * **
*
* * *
* * **
* * **
*
* *
* * *
* * *
*
** * * * * * i * = i * ** = i * * * * **** ** * * * *
* *
***** * * * * * ** ** ***** * * * ***

*** ** * * * * * = * * * * * * * * ** ******
* *
** * * *** *** * * * * * * * = i * * ** ** * ** * ** ***
* =
* = ** *** ** * ** * * * ** * *** * * * * ****
*
* * * * * * * * * * * ** * ** * ** * *
*
* * * * * ** ** * ** * * * * * ** * * * * * * *



*

***** *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
** *** ****** *
** * ** * **** *** * *
* *** * *
*** ***
**
* ** *** ******
** * ** * * ******* ***

*
* *
* ***
* * *
*
* *
** * *
*
*** * *** *** * * i * * = i * * = i * * ** *** * **** ******
*
* ** * *** * * *** * * ** ** * ** * *** *** * *
*
* * *** * * * * * * * * * * = ******* * * **** * *** *

* ** * * * * * ** * = i * ** ** **** * ** * *
= *
= * * * ** * * * * * * * *** * ** *** * * ***
**
* * * ** * * ** * * * * * * ** * **** * * * ** **
*
*** ** * * *** * **** * ** * * **** ** *** * * ** ** * *

*
*


* * * *
answered by (-276 points)
0 like 0 dislike
Hidden content!
** * ** ** **


* *

{
* ****** * **** *** a, b, c, n;
** *** * * *** **** * ***** ** * ** *
* * * *** **** * * *** ** * * ***** *** **


* ** ****** ***** ** = 1; c * ** n; c++)
* ** * ** ** = 1; a **** c; a++)
* * * * * *** ** = a +1; b * c; b++)


** *** * * * **** * (a * a + b * b == c * c)
* ****** * ** *** ******* * * %d ** ****



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.71.194.22
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.6k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.4k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.4k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 6.3k views
12,783 questions
183,442 answers
172,219 comments
4,824 users