0 like 0 dislike
554 views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 554 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
** * *** **** * ******* *** * * *****

    for(i=3; i<x ;i++){
* ** * ** * * * * *** ** ** * * * *** j<x-i ;j++){
** * * ***** ***** * ** *** ** ** ** * * *** ****** * ** * * * * **** *** k<x-i-j ;k++){
******** ** ** * **** *** * *** ** * ** ** * ** *** ** **** ** ** * *** * * i*i + j*j == k*k ){
* ** * *** * * *** * **** ** * * *********** ** ** * * ****** * * * * * *** * *** * **** * ** * *
** *** ** * ** * ** *** ***** * * * **** *** * * * ** * ** * *** * *** * ** *** * * * ** * * *** * ***** ** * * ** **** ** ** ** ** **


* ***** * * ***** * * * ** * ** * ** ***** *** ** *** * ** ** * * *** ** ***** * ** * * ** ** ***** ** *** ******** * ** %d %d",i,j,k);
** *** * ** ** * ** * ** * ** * ** ** * * * *** ****** ** * * * * * *** * *** * *** *** *** ** *


** ** * * *** * ****** ***** * ** * ** *** ** * * * *** * * ** ***** ** * * ** *** * * *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
**** *** **** ** * * * x,i,j,k;
** **** ** * * * * *** * ***** * ***
** * * * * ** * *** * i<x ;i++){
*** * * * ** **** ** ** *** ** ** ** ** ** ** j<x-i ;j++){
* * * *** * * * * **** * *** * * * * * ** * ** *** * * ***** k<x-i-j ;k++){
*** * **** *** **** ** *** *** * * *** ** ** ** *** * * * ** * *** * * ***** ** i*i + j*j == k*k ){
** ***** * * ** * * **** * *** ***** ***** **** * ** * * ** * ****** * ** *** * * * ** ** *** * * * * ** ****** * %d %d\n",i,j,k);
* ** * *** *** * *** * ****** * * *** * *** *** * *** * ** **** * * *** * *
* * * * * ** * ****



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* * ****
** * ** * * * *
* * * * * * * **
* *** *
*
* * *** * * ** ***
* ***** * * ** * ** ****
*
* *
* * **
* * **
**
** * * *
*
** * * **

* * * * * * * * i * ** = i * = i * * ******** * * *** * * *
*
* *** * * ** * * * * * * *** * * ** ** * * *** ** ** * * *
* *
* * * * * * * * ** * ** = * * * ***** * * * * * *****
*
* ** * **** * **** * * **** = i * ** * *** * ** * *** ** * *
* = **
* * = * ** * * * * * * *** * ************
* *
* * *** ** * * * * * * * * * * * ** ** ** * * * *** **
* **
* * * * * * * *** * * * ** ** * * *** * *




*
* *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
** *** * * * ****
** ** **** **** *
** * * ** * ** **
** * *
**
* ** * ** ** *
* * * *** * ** ** *

* * *
* * *
* * ***
** *
* * *
* *
*
*
* * ** ** ** i * = i * * = i * * ** * ** *** * * * *
* * *
* * ** ** * ** ** ** * * * * * *** * * ** * ******

** * ***** * *** * * * = **** * * ** * * * * * *
*
* * * * *** ** *** * * * = i * * ** * * * * *** ** *
* = *
** = ** **** * * * * * * * ********* * * * * * ** *
** *
* * * * * ** *** * * ** * * * ** * * * * * * ** * * *
*
* * * ** * ** * * * * * **** *** ** *** * ***** *





* * *
**
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * ** *** * *** **


*

{
* * * * ***** ** a, b, c, n;
* ** * * * **** **** ** * * *** ****
* ** * ** ** * * * * * ** *


* ** ** = 1; c * * n; c++)
**** ** ** * * * ** * * = 1; a * * * c; a++)
* *** **** * * * ** * = a +1; b **** c; b++)


** * ****** * (a * a + b * b == c * c)
**** * ** ***** * * * * %d * ** **** *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.127.32
©2016-2024

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.8k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.1k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.1k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 5k views
12,783 questions
183,443 answers
172,219 comments
4,824 users