0 like 0 dislike
604 views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 604 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
** * ** * * ** * ** * * * **** ***** * *

    for(i=3; i<x ;i++){
** ** * ****** * ** ***** *** ** * * * *** * * * ** j<x-i ;j++){
** ** * ***** * ** * * * **** ***** *** * * *** ** ** ** * **** * * * k<x-i-j ;k++){
*** * ** * * ********** * ** ***** * ** * **** *** ** *** * ** * ****** * * *** i*i + j*j == k*k ){
** * * * * * ** **** ** * **** * * * **** ***** ** * ** ** * ***** * * *** * * * ** **** * ** ***** * **** * * **
* ****** * * ** * ** * * * ** * * ** ** * **** * * ** * ** * ** ** * * * ** ** ** * * *** ** *** ** * *** * **** * * ** ** **** * **


** **** ** ** * * * ** * * **** ** ** **** **** * ** *** ** * ** ** ** * ** * * * * ** * ***** * *** * * * * *** ** * %d %d",i,j,k);
* *** ***** * ** **** * * * * * * ** * **** * ** * ** * * *** * ****** * ***** ** ** ** * * ** **** ** *


* * **** **** ******* ** * * * ** * * ** ***** * * ** * ** ******* * ** * * *** *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
** **** *** ** ** * x,i,j,k;
* * *** ** *** * ** * * * * ** ** ** ** *** *
* * *** ** ** * **** i<x ;i++){
* *** * ** * * ** **** ** ** * ** * **** j<x-i ;j++){
* * * ** * ** * ** * **** * ** * ** ** * ***** * ** * * * ******* *** * * ** k<x-i-j ;k++){
* ***** **** * *** ** ******* *** * * ** * *** * *** * * * * ** *** * * * ** * * * * i*i + j*j == k*k ){
* *** * * * ****** * * * ** * *** * ** * * *** * * ***** * ** * * * *** * * *** * * * ****** * *** ***** %d %d\n",i,j,k);
* * *** * *** * ** * * * *** * ***** ** * * ** *** ** ** ****** * ** ** ****** *** * *
* ** ** * *** * * ** *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* * *** *
**** *** * * ** **
**** * * * * * ***
* ***
*
*** ****
* * * * ** *** ** **

* *
* **

* * * *
*
*
* * *

* * * ** * ** * * * i * * = i * ** = i * ***** * ** * * * * ***
*
** *** ** * * * * * * * * * ** ** ** *** * ** **
*
** * * * * *** * *** * * * = * **** * * *** * * ** * ** *
* *
* * *** * * * * * * * * = i * * ** * * ** * * *
= *
= * * *** * **** ** * * * * ** * * ** *
** *
*** * * ** * * * * * * * * * ****** * * ** ** ****
* *
** * ** * ** ** * *** * *** * ** * ***** *

*



* *
**
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** ** **** ****
** * * *** * **
*** * ** *** * *
* * *****
*
** * * * * *
*** * ** *** ***


* *
**
* * * **
* *
** * **
* * *

***** * ** * * * * i * * = i * * = i * **** * ** *** * *
* **
* ** * * * * * ** *** * * * ** * * * * * * * *** ****
* *
** * * * * * * * * * * * * * * = * * * **** * * * * ** ******
* * **
* * * ** * * * ** * * ** * = i * ** ****** * * ** ** * *
* =
* = *** * * * **** *** * * * * * ** ****
*
* *** ** * * * * * *** * * **** ** * * * * ** *** *
*
** * **** * ** * * * * * * **** ** * * * *** ** ****


*
*

* **
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * ** * * **** * *




{
* * ** ** * ******* a, b, c, n;
* * * ** ****** ** * * ** **
***** * * * **** * * * **** * * * * **


*** *** * * = 1; c n; c++)
* **** * *** * ** = 1; a * * * c; a++)
***** **** ** = a +1; b * * * c; b++)


** *** * *** (a * a + b * b == c * c)
* ** * * * ****** ** * * **** %d * ** **** **



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.71.254.164
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.1k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.1k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 5.2k views
12,783 questions
183,443 answers
172,219 comments
4,824 users