0 like 0 dislike
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 程式設計(一)AC by (17.9k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 50 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* * ** *** ** * **** ** * ** * * ** *

    for(i=3; i<x ;i++){
* ** * * * * * * * ** **** *** *** * *** * *** * * j<x-i ;j++){
* * * * ** * ** ***** * * * **** * * * ** ** * *** * *** ** * **** ** k<x-i-j ;k++){
* * * *** ** * * **** * **** ***** *** * * *** ** *** * ** * * ** * * * * ** * i*i + j*j == k*k ){
* ** * **** * * ** *** ** * ** ****** ** ** ** * * * *** *** ** * * * ** *** * * *** ****** * * * * *** *
** **** * **** * **** * * * ****** * * *** ***** **** * * * ** * * ** ** * ********** * *** * **** * * ** * *** * ** * *** * ***** * **** ** * *


**** ** ** ** ***** * * ** ***** * ****** * ** **** * * ** ** *** **** * * * * ***** ** ** * ** * * %d %d",i,j,k);
* *** * * * *** * * ** **** *** *** **** *** ** * ** *** **** * ** ** *** * * * ** * * ****** ** * * * *


** * ** * ***** *** *** * * * ****** * *** *** ** ** * ** ****** *** ***** * * * * * * *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* ** ** ** ** * ** x,i,j,k;
*** * ** ******* ** * * * *** * * ** ***
*** * ** ** * ** *** * * i<x ;i++){
*** * * * * * * * ** * *** *** * ** * * * j<x-i ;j++){
* * **** **** * ****** **** * * * ** * * * * ** * *** ** ** *** k<x-i-j ;k++){
* ** * ** * *** ****** ** * ** * *** * **** * * * * ** ** ** * *** ** * ** i*i + j*j == k*k ){
* * * * **** *** * ** * ** * * * **** * *** *** *** *** ** * ** * * * * ******** * ** * * ** ** * ** ** * ** ****** * ** %d %d\n",i,j,k);
***** ** ** * * ** ** * * * *** ** ** * **** ***** *** ** * ** ** *** * **** **
* * * * * * * * ** * *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* * * ** * * *
** ** * ** * ****
*** *** * * *** * *
* * *** * *
*
* * * * **
* * * * * *****
*
* *
***
* * * * **
* **
** * *
* * * *
*

*** * * ** *** *** * i * = i * * = i * ** * * * * * ***** *
**
** * * ** * * * * * * * * ** * * * * * ** * ***
** * *
** * ****** * * * **** = * * ** ** ** ** ** * **** *
* **
* * * * ** * * * * = i * **** * ** *** ** * *
* =
* = ** ***** * * * * *** * * **** * ***** * *
*
**** * * * * * **** * **** * * ***** *
* *
* ** * * * ** * *** * *** * **** * ** * ** * *** * **


*

*
*
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
** * * * * ** **
** *** ****** * ***
* * * * * * **
* * * *
*
*** * **** *** ***
* *** * * * ****

* * * *
* * * *
* *
**
** * *
* * * *
* * * **

**** * * * ** * * ** i * * = i * = i * *** *** *** * * * ** *
* *
* * ** ** * * * * * ** * * * ** * * *** ** * *** * **
*
* * * ** * = * * * * ** * * * *** *
* **
* ** * ** *** * * * * = i * ** * * **** * * **
= *
* = * * * * * * * * * * * * ** ** **** *****
* *
* * * * ** * * * * * * * * ** * * ** ***
*
* * * * * ** * * ** * ** * *** ****** * **** * *




*
*** *
**
answered by (-276 points)
0 like 0 dislike
Hidden content!
** * *** *** ** ** *


* *

{
* * * * * ** * a, b, c, n;
* * ** * * ** ********* * **** * ** **
* *** * ** * ***** * * * * **** **


** ** * * ******** ** = 1; c **** n; c++)
* * * *** * ** = 1; a ** c; a++)
* * ** * * ** ** * = a +1; b * c; b++)


* * * ** * ** * (a * a + b * b == c * c)
** * * ****** ** * ********* * %d ** ** *** *



}
answered by (-74 points)
Get it on Google Play Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.68.65.228
©2016-2018

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 程式設計(一)AC by Shun-Po (17.9k points)
Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 程式設計(一)AC by Shun-Po (17.9k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 40 views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 程式設計(一)AC by Shun-Po (17.9k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 40 views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 程式設計(一)AC by Shun-Po (17.9k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 37 views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 程式設計(一)AC by Shun-Po (17.9k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 49 views
2,974 questions
57,413 answers
29,088 comments
938 users