0 like 0 dislike
825 views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 825 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* ** ** * ** **** * ** **** ** *** * ** * *

    for(i=3; i<x ;i++){
** * * * * ******** * * ** ***** * ** **** * ** j<x-i ;j++){
* *** *** * *** ** * * * *** * ***** *** * * * ** * *** * **** * *** k<x-i-j ;k++){
** ** **** * * ** * ** ** * **** ** * * ** * * ** ** ** *** ** * * * * *** * * ** *** i*i + j*j == k*k ){
*** * **** * ** ** * *** * * *** ** ** ** * ** *** **** ** **** * * * *** * *** ** * ***** * ** *
** ** ** * * * ******* ** **** * * *** ** * ** * * ******** ** ** * ** ***** * * * **** *** ** * **** ** * * * * ** * *** ****** * *


*** **** ** * *** * **** * * **** * *** * *** **** ** * ****** *** **** * ******* * ** * * * * * * * ** * *** *** * * %d %d",i,j,k);
* * *** * * ** ** ** ** * * *** * *** *** ** * ** * *** * ** * ** * * *** * * * *** * ** * * *** **** * *


* ** ** * * ** **** * *** * *** ** * * * ** * * * *** * * * ** * * * * ** ** * * ***** * ** *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
** *** ** ** * *** *** x,i,j,k;
*** *** * * * ** * * ** ** ** ** *
* ** ** * ** * * ** * ** i<x ;i++){
* ** * * ** ** **** * ** ** ** ** ** ** ** ** * ***** j<x-i ;j++){
* *** * * *** * * * * * **** * * * * **** *** ** ****** * k<x-i-j ;k++){
* * * ** * * * * * *** ** * **** ****** * * * *** * ** *********** * ** i*i + j*j == k*k ){
*** ** * ** **** ** **** * * * * * * ** * ***** ** * * ** ** * **** ** ** ** **** **** * ** ** * * *** * ** %d %d\n",i,j,k);
* ** * * *** ** *** * ** ******* ******* ** * ****** ***** * ***** * **** *** *** * *
***** * ** ** * **** **



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
**** * * * * *** *
***** * ** * * *
** ******* *** **
***** *

**** * * ***** *
**** * *** ****

* *
* **
* **
* *
* * * *
* * *


* * * * * i * = i * = i * * * ****** ** * *** ** * * *
* *
* * ** * ** ** * * * * ** * *** ** * ** ** *
** *
* * * * * * *** ** * * * * * * = ******* ** ** **** * * ****
*
* * **** * * * * * * * = i * * * *** * * ******* ** * *
=
* = ** * * * * * ** * * ** * ** ** * *** * *** * *
** *
*** * ** * * * * * * * * * * ** * * * * **
* *
**** * ** * * * * * * *** *** * **** * *




*
**** *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* **** *** *** ***
* ** ** **** * ***
*** ** * **** * ****
* ** ***

** * *** *** * **
****** ** *** **** * * * *
*
*
* * * ***
* * *
* *
* *
* * *
** *

* * * * * ** * i * = i * = i * * * * * * * * * *** * * **
*
* ** ** * ** ** * * ** * * *** * ** *** ** ** ** ***
*
**** * ***** * *** * * = * * * * * * **** * * * *
*
* ** ** * * ** * * * = i * ** * * * * ** * *
* = **
**** = * * ** * ** * * * * ** ** ******** * *** * * *
* *
* * * ** * * * * ** * * * * * * ** ** ** ** **
* *
*** * * *** * * * * * * ** * ** * * * ** **


*
*
*
* * *
answered by (-276 points)
0 like 0 dislike
Hidden content!
** ** * ****


* *

{
* ** *** ****** ** * a, b, c, n;
* ** * * * * ** *** ** * ** * ** ***
** * ** * * ****** *** **** **** * * * * *


*** * ** * * * = 1; c * * n; c++)
****** ** * ** = 1; a * * c; a++)
* * * *** * * = a +1; b **** c; b++)


* * * * ** *** (a * a + b * b == c * c)
** * ***** * ** ** ** %d * * * *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:108.162.216.215
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.7k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.5k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.4k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 6.4k views
12,783 questions
183,442 answers
172,219 comments
4,824 users