0 like 0 dislike
1.3k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.3k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* ** * * * ** * *** * * *** * * * **

    for(i=3; i<x ;i++){
*** * * ** * * * ** ** ***** * ** * ** * j<x-i ;j++){
* ****** * * ** ** * * *** * *** * *** ** * * ** ******* * ******** * * *** k<x-i-j ;k++){
* * * * * ** * *** ** ***** *** ** ********* * * * * ** **** ** ** *** * ** * * i*i + j*j == k*k ){
** ** ** * * * * ** * ** * ***** * *** * ***** * ** * * **** ** **** ***** * ** ** ****** *** *** ** **** * *
* ** *** * **** * * * * * *** * * * * **** ** *** * * **** * **** **** * ***** ** * * **** * * ***** * ** * ** **** ** * * * ** * ** * *** *


* * * *** **** * * * * ** * **** *** * ** * ** * * **** * ** * * * *** * * * ****** * *** * %d %d",i,j,k);
* * * * ** ** * * * ** *** ** * * ** * * * * * ***** ***** ******* ******* **** ** ** * * *** * ** ** *


* ******** * * ** * * *** * * ** ** * *** *** ** * * ** **** ** ** * ** * * ***



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
**** **** **** * * *** x,i,j,k;
** *** * ***** * * ** * * * ** *
* * **** * **** ***** *** * i<x ;i++){
****** * ******** ** * * *** **** * *** **** j<x-i ;j++){
**** ***** * **** * * * * ** ** ** *** * * ** ** * * ** ** * k<x-i-j ;k++){
* * * * * * ****** * *** ** * ** * * ** * ** *** *** * * ** ** * * **** ** * ** i*i + j*j == k*k ){
* **** * ***** * * **** *** **** * ** **** * ** * ** ** ** * * *** **** ** ***** ***** * * ****** %d %d\n",i,j,k);
** ** *** ** * ** *** * * *** * ** * * * *** * ** * *** * ** * ** *** *** * * * * **
* * ** ** * ** *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* **** * ****
* * * *** * * *
* *** * **** *
** * ******
**
* ** *** * ** ****
* * ** * ** *** * * *

* *
**
* *
* * *
** * **
* * * **
* * *

**** * * * * * ** * i * * = i * ** = i * *** * ** * **

*** * * * ** * ** * * * * * ** **** * * ** *
*
* * * ** * * * * * = * * ** * *** * *

* * * *** ** * *** * * * * = i * *** * *** * ** *** *
=
** = * * * * * * * * * * *** *** * ** ** * ** * ****

* * * * ** * * * *** * * * * *** * * * * * **** * * ** **** *** *
*
* * ** * * * * * * * * * * * * **** * ** * ** * * * *



*

* * *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * * * ******
* * * * ** * *
* *** ******* * * *
* ** * *

* **** * *
**** * ** ** * ** *
*
* * * *
* * * * **
* *

* **
*
** * * *

*** *** * * * * * i * = i * ** = i * * * * ** * ** * ** *
**
* * * * * * *** * * * ****** * ** ***** * * * * **
* * *
* * * **** ** * * * * ** = * * * *** ** ** ** ** ** **
*
* * **** *** *** * * * ** = i * * * ** * * * *** * * * * *
* =
** = ** * * * * * * * * * ** **** *** ** ** ** **
* *
***** * * * ** ** * * * * ** * ** ** * *** ** ***
** *
*** * ** * * * * * * ** * * * **** ** ** * *** * **** *

*
*

*
*** *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** * * * * **


***

{
** ** ** * * a, b, c, n;
* ** * ** * * ** ******** * * ** *** *
** * * ** ** * * ** ** * **** *** ***


** * * * * ***** ** * = 1; c * ** n; c++)
* ** **** ****** = 1; a ** c; a++)
* *** *** * *** = a +1; b ** c; b++)


** * ** * **** (a * a + b * b == c * c)
* ** * ** ***** ** * * * ** *** %d * ** * *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.126.9
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 4.4k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.3k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.2k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 10.2k views
12,783 questions
183,442 answers
172,219 comments
4,824 users