0 like 0 dislike
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 77 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
*** ***** * ****** ***** * **** * * * **** *** **

    for(i=3; i<x ;i++){
*** * * ** ** * *** * * * * * * ** *** * ** ***** * j<x-i ;j++){
**** * ***** * * ***** *** * *** * ** * ** *** * * ** ** ** * ** *** k<x-i-j ;k++){
* * *** * **** * ** ** ** *** **** ** * ** *** ** * * * * ** * *** * * * * * * *** i*i + j*j == k*k ){
****** *** * * * *** * * *** * ** ****** * * ** * * ** ** * ** * ******* ** * * *** **** *** *
*** * * * ** ***** * **** ** **** * ** * * ** *** * *** * ** * * * * * * ** ** * * ** * ** * * ** ** **** *** ** * ** *** ** ******


*** * * * * * * ** * * ** ** ***** ***** ** **** * ***** * * **** * ** *** ****** ** ** * ** * ** %d %d",i,j,k);
** **** ** * * * * * ** ** ** * * ******* * * * * ** *** *** ** * ** * ** ** * * *** ** ** **** * * * * * *


** ****** * * * * ** ** ****** * * ** * * ** * ******* * * * *** * * * **** * * ** **



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
******* * ****** ** ** x,i,j,k;
** * ** * * * * *** ** * * ** *********
** ** * ** * * ****** * i<x ;i++){
* * ** * ***** * ****** * ** ** ** ** * j<x-i ;j++){
****** **** *** ******* *********** * ******** * *** * ***** * **** ** k<x-i-j ;k++){
** ** * ****** * ** * * ** ** *** *** **** * ** * * ** ****** * *** * * ** * ** * ** * * *** ** * i*i + j*j == k*k ){
****** * * * * * **** * * * * ** * *** *** ** * *** * ** ** ** * *** *** * ** * * ** * * **** ** *** %d %d\n",i,j,k);
* * * * ** ****** * * * ***** *** * **** * **** ******* ** * * * ** * ** * **** ***
* ** *** * ***** *** **



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
*** *** ** * *
* *** **** ** ** **
****** ** ***** ***
* *

* *** * *
** * * ** * ** * * * *

* * *
*
* * *
** * * *
* * * *

** * **

*** ** * ** * * ** i * = i * * = i * * ** *** ***** * * **** * *
* *
* * ** * * * * * * * ** ** ** * * *** * * ***** * *
** *
* * * * ** *** * * * = ** * * * * * * *** * *** *
** *
** * * * ** * * ** * * * ** = i * * * ** * ** **** *
= **
* ** = * * * * *** * * * * * **** * *** * * * ** *
** *
* * ** * * * * ** * ******* ** * * * ****
* *
** * ** *** * ** * * * * * * * * * *** * * *** ** **

*



*
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* **** * *** * *
* *** * ** ** **
* ** ** ** ** **
* ** *
**
* * *** * *
** ** *** *** **

*

*
* *
* *
* *
* *

** ** * * * * ** * i * ** = i * = i * *** ** * * * * * * *

* * * ** * * ** * * * * * **** * ** * * ** * * * ********
* *
* * * * * * ** * * * ** = * * * ** ** ** * * ***** **** **
* *
* ** * * * * * * * = i * * * *** * ** * ** * *
* = *
** = * *** ** * * ** * ** ** *** * * **
*
** * ** ** * * * * * ** * * * ***** * * *
** * **
** ** * * * * * * * * *** ***** ** **** *
*
*



** *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * ** ** *** * *


*****

{
**** * *** * ** ** a, b, c, n;
* * * *** ** * *** * * * ****** * ****
* * ***** * ** * ***** *** * * * * *


* ** ** ** = 1; c * n; c++)
* * ** ** * * * *** = 1; a **** c; a++)
* * ** * *** = a +1; b ***** c; b++)


** * * **** * * * (a * a + b * b == c * c)
* * * * * * * *** * * * ** %d * * ** *****



}
answered by (-74 points)
Get it on Google Play Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:162.158.78.40
©2016-2019

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 112 views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 91 views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 98 views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 279 views
9,360 questions
87,943 answers
67,225 comments
2,814 users