0 like 0 dislike
1.5k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.5k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* * **** ** ** * * * * ** ** * * * ***

    for(i=3; i<x ;i++){
********* * ** ** * **** **** ** *** * *** * * ** j<x-i ;j++){
* **** * ** * *** ** *** * * ** ***** * * * **** ** ** * * ** * k<x-i-j ;k++){
* *** * ** ** * * * ** * **** * * * ****** ** * *** * * * *** * *** * **** ** *** ** ** i*i + j*j == k*k ){
** ** * ** **** ** * ** * ** ** *** ** ** * * * * * ** ** * *** *** ** ***** ** * * * *** *** * * * *** **
* ***** **** *** * * ** * * *** * * * * *** * * * ***** * * * *** ** * ** * * * ***** * *** ** ** * * * * ***** ** *** * *** ** * **** * ** ** * *


*** ** *** ** ** * * * * ** ** * * ** **** * ** ****** * * ** * * ** *** * **** **** * * * * *** * ** ** * %d %d",i,j,k);
* * * ****** * *** * **** ****** ** * ** * *** ** * * * * ******** **** * * * *** * ** * ** ** *** * ** *


* ** * *** ******** ** * * ** * * ** * ** ** *** ** * * ** **** ****** ***** * ****** *** *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
** ** **** ** * * * x,i,j,k;
** ** * ** *** * * *** *** *** *** *
**** *** ** ******* **** ** i<x ;i++){
**** * *** *** * * * ** * * **** **** ** * * *** j<x-i ;j++){
** * * ** * ***** * * * * * *** ** *** * ** **** ** * * **** * * *** k<x-i-j ;k++){
** ** ** * *** * * * * * **** * *** * *** * * * **** * * * *** * * * ** * * ** * i*i + j*j == k*k ){
* ***** * ** * **** * *** ** ******** ** * ** ** * * *** * ** * * * * * ** ***** ** ** ****** * * **** * * *** %d %d\n",i,j,k);
** *** ** *** ** ** **** * *** **** **** * * * * *** **** * ** ** ********** * **
** ** * ** * * * ** **



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* * ** **** ******
* * *** * * * **
* ** ** * ** *
* **
*
* * ** ** * *
* * ** *** * * * **
*
* * * *
* * *
* * * *
* *
* *
* * * **
* *

* ** ** * * i * = i * = i * *** * ** **** * * * * *
*
** * * * **** * * * * * * * * **** * * **** ***** ****
*
* * * * * *** = * * **** ** * * * * * * ***** * *
* *
* * * ** ** ** * * * * = i * * ** *** *** * * ******** *
** = *
* * * = ** * * * * * * * * ** * * * ** * ****** * *
* *
* * * * * * ** * * * * * * * * ** * * ** * * * ******
* *
* ** * ** ** * * * * * * * * ** * ** *** * * ** * ** ** *

*



* *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * ***** ** ***
*** * ** **** *****
** * * * * ** * *** **
* *

* ** * * * * **
* * * **** * ***

* *
* *
* *
** *
** * * *
* *
*

** *** ** i * * = i * * = i * ** * * ** * * ** * * * **
* *
**** * * *** *** *** * * * *** * * *** *** * * *** *
* *
* * * * *** ** * = * ** **** ** ** * * * *
* *
* * ** * * * * * * * = i * ** * * * * * ** ** * *** *
= *
*** = ** ** * * * * * ****** *** * ** ** ** ** *

*** * ** ***** * * * * * * * * * ** * * ** * ** * *
* * *
* * * * * * * ** * ** * * * ** * ** * ** *** *





**
answered by (-276 points)
0 like 0 dislike
Hidden content!
**** *** *** ** * ***


**

{
***** * ** * * * a, b, c, n;
* * ** * *** * * ** *** ** ***** ** * **
* ** * ** * *** **** **** * * * **** * **


***** * ** * = 1; c *** n; c++)
** * ** *** ** *** = 1; a * * c; a++)
* * * ** * *** = a +1; b * c; b++)


** ** * *** *** * (a * a + b * b == c * c)
** * * ** * ** * ** * * %d ** * * **



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.131.190
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 5.2k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.6k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.6k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 11.7k views
12,783 questions
183,442 answers
172,219 comments
4,824 users