0 like 0 dislike
1.2k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.2k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
*** * *** *** ** ** ** * ** * * *** *** *

    for(i=3; i<x ;i++){
* ** * * ** *** ***** *** ** * *** * ** j<x-i ;j++){
* ** * *** ** ***** *** *** * *** ****** ** * ** *** * ** * ** **** ** * k<x-i-j ;k++){
*** *** ** ****** ********* * * * *** ** * *** * *** ** * ****** * * ***** i*i + j*j == k*k ){
** ** **** ** *** * * * ** ** **** * *** * * * * *** ** * * ** ** * * *** * * ** * * ** * ** ** *** **
**** ** * * * * ** * * * ** * *** * *** * * * * **** * * * * ** * *** ** * ****** * ** * * * **** * * * * ****** ***** ** * * ** ******* *


** * * * *** **** **** * *** * * *** ** ** ** * * **** ** ** *** **** ********* * * * * * *** * * * * %d %d",i,j,k);
* * ******* *** * * * * * * ** ******* * * ** * ** **** ** * ****** ** * ** * * **** ***** ** ** * * *


** * * * * * * ** ** * ** *** ** ** * ********** *** * * * ** ** ** * ** **



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* * ** *** * x,i,j,k;
*** ***** ** *** **** *** * * * ** **** ***** *****
*** * * ** **** *** * *** * i<x ;i++){
* ** * * ** ***** *** * * ** ** * ** j<x-i ;j++){
********* ** * * * * ** ** ** ** ** *** *** * * ****** * * * * * * k<x-i-j ;k++){
* *** * * *** ** * * * ** *** * ** * *** ** * ** ** *** * ** ** * * * ******** * *** ** ** i*i + j*j == k*k ){
** * * ******* ** ************ * *** * * ** ****** ******** ** * * ** ** * * *** ******* ******* * ** ***** ** ** * ** * %d %d\n",i,j,k);
* ** *** * *** ** * * **** ** *** *** ** **** ** **** **** ** **** ** **
** * * * * **



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* *** ** *
* ** * ** * ** * **
* * *** ****
* * *
*
* **** ** * *
** * * * ** ** * * ** *
*
* * **
* * * **
*
**
* * *
** **
* *
*
* * * ** *** * * i * ** = i * ** = i * * ** * * ** ** ** ** *
*
*** * * ** * * * * * ** ** ** *** * * ********* *
* *
** * **** * * * ** * = * * * ******* * * * * ****
* **
** * ** * * **** * * * ** * * ** = i * * * * ** * * * * *** ** ** **
= *
* = * ** * * * * * * * * ** * * ** * * *** ***
* *
* * * * ** * ** * ** * *** * ** * * * *
* **
* ** * * * * *** * ** * ***** * * *** * *

*

*
*
* ** * **
answered by (-276 points)
0 like 0 dislike
Hidden content!
** * ***** ****
** * *** ******* **
* * * ** ******* *
* * *****

** *** * *
* * ** * ** * ** * * *

** * *
* *
* * *
*
* *
* *
* **

*** * * ** * ** * i * * = i * = i * ** * ** ** ** **
*
** * *** ** * ** * * * * * *** ** *** * ** * * ** *** * ****
** **
* * ** ***** * * * = ** * *** * * ** **
*
* * * * * * * * ** = i * * * ***** ** * *** * * *
* =
* * = * ** * * ** * * **** * *** *** ** * * * *
* *
* * * * * ** * * ** * * ** * * ****** *** * ** *****
* *
** * ** * * * *** * * * ** * * ** * * ** ** ***
*


*

* *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * * * **


* *

{
* ** * * * a, b, c, n;
* * * ***** * * * ** ***** ** * **** * ***
* *** ******** * * ** **** * ** *** *


** * * * * ** ** *** * * = 1; c * * * n; c++)
* *** *** ** * = 1; a * * c; a++)
** ** ** * * ** * = a +1; b *** c; b++)


** * **** ** (a * a + b * b == c * c)
* *** ** ****** ** ** %d *** *** *** *****



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.80.81
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 4.1k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.2k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.1k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 9.8k views
12,783 questions
183,442 answers
172,219 comments
4,824 users