0 like 0 dislike
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 123 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
** ** ** *** * ** ****** * * * ** ** ** ** * **

    for(i=3; i<x ;i++){
* * *** *** **** * ** * * * * *** ** ** ** j<x-i ;j++){
** ** **** *** ** * ** * *** * *** * * ** ** ** ** * **** * ***** ** * *** ** * k<x-i-j ;k++){
** *** * ** * ** ** ** ** * * ** * ****** * * ** * *** ** * * * **** * * i*i + j*j == k*k ){
**** *** *** * * * ** * * * * * * * **** * * * ****** *** **** ** ** ** * * ** * * ******* ** *** * * * * *
*** * * **** * **** **** *** ** ** * * *** * *** **** * * ** ** ** * * ** *** * * * ** *** *** * * * * ** ** *** * *** **** * * ***


* * * ** *** * ** * * * * ********** ** * *** * ** ** *** * *** * * * ****** * ** * * ** * ***** * * * ** * %d %d",i,j,k);
**** ****** * * ** * * ** ** *** * **** * * ** * * ** * * **** ** * ****** * * ** *** * ***** * * * *** * ** *** * * * **


* * * ** * * * ** * * * * * * ** * * *** * * * *** ** ** *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* * **** ** ** * **** **** x,i,j,k;
*** ** * * ** **** * * * ***** ** *** * ** * *
* ** * * ** *** * i<x ;i++){
** ** * * **** ** ** * ** ***** * *** ** **** ** j<x-i ;j++){
* * * ** * * * ** * * ** * * * * **** ** ** * * * * ** ** k<x-i-j ;k++){
*** * *** * * ** **** * * * ** * ** ** * * *** * *** * * * * * ** ** **** ** ** * i*i + j*j == k*k ){
* **** * * **** ** *** *** * *** *** * * * * * * * ** ** * ** ** * *** * * ** * * * * * * ** * * ** * %d %d\n",i,j,k);
* ** ** * * *** * * * ***** ** ** ***** * ***** * ** * *** ** * * *** *** * * ***
* ** *** ** *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* * * *** * *
*** *** **** * **** *
* * ** * ** **** ***
* * *** *

* * * ** *** *
** ** ** * **** ** *** ***

* *
* * **
* **
* * *

* * * *
* * *

* * * i * ** = i * * = i * *** * * ** *** ** *
* **
** *** * * * * * * * * * * ** * ** * ** *** **
*
** * * ** * ** * * ** * *** = * *** ** * * * *** * ***
* *
* * * * ** * * * * * * * ** = i * *** ** ** ****** * * ** * *
* = *
* = ** * * * * * * * * * * ** *** ** * ** **
** *
** * *** * ** *** * ** ** * *** *
*
* ** ** *** * * ** * * *** *** * * * * ** **** ***





** **
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
** ******** *
******** * **** *** *
* * ** * ** *
* ***
**
* *** * * ** *
* ***** * *** *** ** **

* * **
* *
*
* * * ***
* *
* **
* * ***

* * * * * * * i * * = i * *** = i * ** *** * *** *
* **
*** * ** * * ** * * * * ** * * * ** * * * * * ** *** * **
* * **
* * * ** **** * ** * ** = * ** ****** *** * ** * * * ****** *
** *
* *** * ** * * * * * * = i * * ** * * ** * * * *** * *
= *
**** = * * ** *** * ** ** ** * ** * ** ***** * *****
* *
* * * * * ** * ** **** *** * ** ***********

* * * * **** * * ** * * * * * * * *** * ** * * *** ** * *



*
*
**
answered by (-276 points)
0 like 0 dislike
Hidden content!
** * ** **** ** *


*

{
******* **** ** a, b, c, n;
** * **** * ** ** **** ***** ** * *** * *
**** * * * *** * *** ** * ** ** * ***


* ** **** ** **** = 1; c * * n; c++)
* ** * *** * ** ** = 1; a * ** c; a++)
******* *** * * = a +1; b * ** c; b++)


*** * ** ***** * *** * (a * a + b * b == c * c)
* * **** *** ** ** * * * %d * *** ** **



}
answered by (-74 points)
Get it on Google Play Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:108.162.219.75
©2016-2021

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 264 views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 201 views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 219 views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 750 views
11,539 questions
144,437 answers
149,285 comments
4,159 users