0 like 0 dislike
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 168 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
**** **** ******** * ** ** * * * ***** *

    for(i=3; i<x ;i++){
* **** ***** * **** * *** * **** ** ** *** **** j<x-i ;j++){
*** * * * ** * * * * *** * * *** * * ** ** *** ** * * * *** * * k<x-i-j ;k++){
* ** ** ******** **** * ** *** ** *** ***** ***** * * *** ** * ** * * ****** * * * ** * i*i + j*j == k*k ){
**** * * ** ** ** ** ** * * * ** * ***** ** ** ** * * * * ** * * ** ***** * * * * ********** * ** ** * ** ** ** *
** * * * * * *** * ** * **** * ** * ****** * * ** * ** ** * ** **** * * * * * ** * * ** ** **** ***** ** * ** ***** ** *** *


*** ** * * ** ***** ** *** ** ***** ** ** * ** * *** ** *** * * ** * ** *** * * * * * *** * * ** ** * * %d %d",i,j,k);
*** * ***** * **** * * * * * * * * *** * * * * ** * ***** * ** ** *** **** ** ** * * *** * *


**** ** * *** * * **** * **** ** * * * *** * ** **** * ** * ** * * ** * * * * *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* ** *** * ** *** x,i,j,k;
** ** * ** **** * *** * ** ** **********
** *** ** * *** **** i<x ;i++){
* * ** ****** ** * * **** * * ** ** * * * j<x-i ;j++){
* * * * * * * ** ** ******** * * ** * ** * * * * *** * ** * ** * k<x-i-j ;k++){
* * ***** * * ** ** ***** *** * * * * * * * * * * *** *** ** i*i + j*j == k*k ){
** *** * * ***** * ******* ******* ** ** * * ** ** ** * * **** ** ** * * ** * * ** **** ** * ** ** * ** * * ** %d %d\n",i,j,k);
* * * * ** * ** **** * * * * * **** * ** * * ** ** *** * * **** **** *
*** ** * ** * * ***



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
** *** ** *
** **** ****
******* ** ** **
*** * *

* * ** *** *** *
*** ** *** * ***

* *

* * *
* * *
*
**
*

*** * ** * ** i * * = i * = i * ** * * * *** ** * *** *
* *
* * * ** ** * *** * * * * * * * * ** ** * * * ** * * **
*
* * ** * * *** * * * = * * ** ** *** * *** * *** * *
*
* * * ** * * * ** * ** = i * * ** ** ** *** ****
= **
* = * * ** ** * ** * * * *** * *** ** * * **** **
* * **
** * * * * * * * * * *** * * * * * * **
** *
* * * ** ** ** * * * * * ** * ******** * * * * *

*
*

*
**
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
** ********* ******** *
* ** * ** * * *
* **** *** * *
*** * ** *
*
** ******* **** *
* ** *** * ** ** * * ** *

* *
* *
* *
*
* *
** * * **
**

* * * * * * * i * ** = i * = i * * * ** ** * * * ***
* *
* ** * * ** * ** * * * * * * **** * * * * * * ** ** * **** ** *

** * * **** * * * * ** = * * * ** * * ***** * ** *
** * *
*** *** * * * * * * * * = i * ** * * ** *** *** ** **
* =
** = * ** * * * * * * * * * * * * **** ** ** ** * * **
* *
**** * *** ** * * * * * * * * ** * ** * ** * **
* *
* * ** * * * * ** * *** ** ** * * * * **

*
*


* **
answered by (-276 points)
0 like 0 dislike
Hidden content!
*** *** *** ******


*

{
** ** ** ** * * * * ** a, b, c, n;
** * * ***** ** * *** **** ** * * ***** ** * * * ***
*** *** * * * * *** * ** ** * ****


** **** * * = 1; c * n; c++)
* * *** * * ******** ** = 1; a ** * c; a++)
*** * **** = a +1; b ** ** c; b++)


** **** * ** * *** * (a * a + b * b == c * c)
* * * * * * * *** %d * * ** ** **



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:52.23.219.12
©2016-2021

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 413 views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 261 views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 288 views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.2k views
12,482 questions
174,116 answers
168,082 comments
4,649 users