0 like 0 dislike
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 282 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* * * *** * * *** * * * **** *********

    for(i=3; i<x ;i++){
** **** * **** ** ** * ** ** * ** * * * * *** j<x-i ;j++){
* * * * * * ** ** ***** * * * * ***** * * * **** ***** * * * * * ** ** k<x-i-j ;k++){
* **** * * ** *** ** * * * **** ** * *** * ** *** * * * ** * *** ** * * * ** ** * * i*i + j*j == k*k ){
** * ******** * *** ** **** ** * * ** **** * * * ** * * **** ** * *** *** * * * * * * * ******* ** ** ** * ** *
** ** ** *** * * *** ***** * ***** * **** **** * * * ******* * ** * * * ** * *** * ** * **** * * ** * * * * *** * *


* ** *********** * ***** * ** * ** ** **** * * *** * * ** *** ***** * * *** * * ****** * * * * ** * %d %d",i,j,k);
*** * * ** * **** * ****** * ** **** * **** * * ** *** **** *** * ***** *** * * ** * ******* * * *


* * * ****** * ** * * ** ** * ** * ******** ** * * * ** * * * **** *** * * *** ** *** ** * *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* ** *** ** ** * ** * x,i,j,k;
* ** * ** * ****** * * *** * ** * *
* * *** * * ** *** * *** * * i<x ;i++){
* ** **** * *** * * *** ** * ** * * *** ** * * ** j<x-i ;j++){
* ****** * ***** * * **** ** * * *** * ** ** ** * ** * * * * k<x-i-j ;k++){
***** * ** * * * * ** ** ** *** * * **** ** * * * *** * ** * ** ** * ** * ** ***** i*i + j*j == k*k ){
* * ** ** *** * ** ** *** * * *** * ***** ** * * * * * **** * ** * *** * ** **** ** *** * * * * * * **** * %d %d\n",i,j,k);
** * *** * ** * * ** * * * **** * * * * ** * ** * *** * ** ** ************ **
** *** * * *** * * * *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
*** *** * * *
* * ** * * ****
** * ** **** * ***
* ****
*
* * * *
*** * * *** *** ** *
*
* *
*
* *
* * ***
* *
**
** * * * *

**** *** * * * i * = i * * = i * * ** * * * * * * *****
* * *
* ** * * **** * ** * * * * * * * * * * * * * * * ** **** *

** ** * * * *** * * = * * *** ** ** *** * *** ** *
*
* ** ** * * * ** * = i * ** * ** ** **** *** **
=
** = ** *** * * * * ** * * * ***** * ** ** * * ** * *** **
*
* * * *** ** * * * * * ** *** ** * **** * * *
*
* * ** * * * * ** * *** * ** ** * *

*

*

***
answered by (-276 points)
0 like 0 dislike
Hidden content!
*** * * * ** **
* * * *** ** * *
*** *** ** ***
** ** ****
*
* * ** * ** **
* *** *** **** * ** *
*
* * *
* * *
** * *
* * **
* *
** * *
* * *
*
* * * * * ** * ** i * * = i * * = i * * * * * * * * *** *** ***
* *
**** * * * * * * * *** * * ** ** ** * * ** * ** *
*
* ** * ** * * * ** * * * * = ** **** ***** ** *** *
*
* * * *** * * * ** = i * * * * * * *** * ** * *
** = *
** = ** ** *** * * * *** * * ** ******* * * ** * *** ** * *
* **
* ** * * * * ** * * **** ** * * * ******* * *
*
* ** ** * *** * * ** * * * * * * **** *** ****** * *



*

*
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
***** ** * * * **


** *

{
*** *** ***** * * *** * a, b, c, n;
* * * * ***** * * * * * ** * * * *
** * * **** * ***** ***** *** ** * ** * ** *


** * * *** ** * *** = 1; c *** * n; c++)
* *** * *** = 1; a ** * c; a++)
* ** ** ** **** = a +1; b ** c; b++)


*** * ** * * *** (a * a + b * b == c * c)
* * * *** * * *** * ** %d ** ** * * ***



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:162.158.78.122
©2016-2022

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 794 views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 496 views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 513 views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.4k views
13,844 questions
209,757 answers
189,808 comments
5,435 users