0 like 0 dislike
1.5k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.5k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
** * ***** * ** ** * * ** **** ***

    for(i=3; i<x ;i++){
* * * * * * * * * * *** * * ******* * ** * * * j<x-i ;j++){
***** *** **** * * *** *** *** * * ** ** ** * ** * ******** * * k<x-i-j ;k++){
* * ** * *** * ** ** *** ** * *** * ** ******** * ** * **** *** * * ** ** ** *** * ** ** ** * i*i + j*j == k*k ){
** * ****** * * ** * * *** ***** ** ****** * ** ** *** *** ** * *** ** ** * * ** ** * * * * ****** ** ** *****
* * * ** ****** **** * * ** *** * * ** ****** * * * ** ** * ** *** * * ******* * * * ** ** **** * * ** *** *** ** ** *** * ** * * **** ** ** * * * ** **


*** **** * * * * ** * * * ** * * * * * * * ****** *** * * ******* ******* ** *** ** * ***** * * * ** ******* * ****** * %d %d",i,j,k);
***** **** * * * *** ** *** ** * * ** * ** *** * * * ** * ** * * *** * * **** * ** * **** ** ** ** ****


**** *** * * ** ** * ** * ** * ** ** *** ****** * * * ***** * **** ** * * *** **



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
** *** * *** *** *** x,i,j,k;
* * * ***** *** ** * * * *** *** * *** ******* ** * *
** * * ** * * ** *** * i<x ;i++){
* ** * * ** *** ** ** * ** * * * ** * * *** j<x-i ;j++){
** * ** * * * * * * ** ***** * ** ** ** * * * *** ** ** ** ** * ** * * * * * k<x-i-j ;k++){
**** * * * ** * ** ** ** * ***** ** *** * ** * * * *** *** *** * i*i + j*j == k*k ){
***** ** * ** ** ** * * * * * ** * **** *** * ** ** ** * * * ******* ** ** ** ** * ****** ** * * ** * * *** *** %d %d\n",i,j,k);
** * * *** * * * ** * * * * ** **** ** * ***** ** * **** ***** * *** ** * *
** * * * * *** ** * ** *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* * * * ** * * *
** *** * * *** ****
****** * * ** * *
** *** *

* * * * ** *****
* ***** * * **** * **

* * *
* *
* *
* **
* *
* * * *
* *
*
* ** * * * i * * * = i * * * = i * * * * ** ** * * ** ** *
* *
*** ** * ** * * * **** * *** * * * * ** *******
** *
* * ** *** **** * * * * = * * * * * * ******
*
* ** * **** * * * * * * *** = i * * * * * * ** *
* =
*** = * *** *** * * * * * *** * ***** *** ** * * * * ***

* * *** * * * * * * * * * * **** * * **** **
*
* * * * * * * * * * ** *** **** *** * * * ***** *****
*


*
*
*
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
*** ** ** ** ***
* * ******* ** *
* * ** * ** ***
* * * ***

* * ***** ** **
** ***** * * * * ****
*
* * *
***

* * ***
* * *
* **
** *

**** * ***** ** ** i * = i * * = i * **** *** ** * ** * * ** *

* * ** ** * * * ** * * * * ** *** * *** *** *** *
* *
** * * * * * * * * * = ** ** * ** * * * ** * * *

**** * ***** * *** * * ** = i * *** * *** * * **
* = *
* ** = ** * * * * * * * ** * *** *** * * * * **** * ***
* *
*** * * * *** * * * * ****** * * *** *** ** **
* * *
*** *** *** **** * * ** *** ** * * * * ******





* * *
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * * ** ** ** ** *


**

{
* **** * * * *** * a, b, c, n;
* ** ** **** *** ********* * * * * ** * * *
******* * ** *** *** ** * ** ** * * *


* ** * = 1; c * * ** n; c++)
**** * *** ** = 1; a **** c; a++)
* * **** * ** * ** = a +1; b * *** c; b++)


**** ** * *** ** * (a * a + b * b == c * c)
** ******* *** **** ** * %d * * * * ** *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.230.51
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 5.2k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.6k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.6k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 11.7k views
12,783 questions
183,442 answers
172,219 comments
4,824 users