0 like 0 dislike
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 142 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
** ** ** ** * * * *** ********* * ** * **** *

    for(i=3; i<x ;i++){
* *** * **** ***** * ** ** ** * * ** ** ** * ** j<x-i ;j++){
**** * * ****** ** * * **** ** ** * *** * ** * **** * * * * ** * * **** k<x-i-j ;k++){
* *** *** ** ***** * * ** ** * * * ** * * ** * ** ** * ** * ** * ** ** ** * ***** ****** * i*i + j*j == k*k ){
***** ** ** ** **** ** * ** ** * * * * ****** ** **** * * ** ** * *** ** * ** * ** ** ** * * * ** * **
* ** * * ** * * *** ** * * * *** * * * *** * * ** ** * * * * * ** * ** * ** * * * ** * * *** **** * *** ******* * ** ** ***** ** * * *** * *


****** **** * **** * ** *** * ** * * * ** * ** *** * *** * *** ****** * ** * **** *** * * **** ** ** * *** * * ****** %d %d",i,j,k);
** ** * * ** * *** * * ** *** * **** ****** * ** ** * *** * *** * **** ** * * ** ** *** ** *** ** ** **


** * ** * * ** *** * ** **** * *** * * * * * ***** * ** ***** ** ***



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* * *** * **** ***** * x,i,j,k;
* ** *** ***** ** * * * *** * * **
* * ** **** ** * * * ** i<x ;i++){
** ***** *** * ** * *** * *** * * * **** * ** j<x-i ;j++){
* ** * ** **** * *** * * *** * **** ** ** *** ** * ** ** ** * ** ** k<x-i-j ;k++){
* * * * * ** * ** *** **** *** * *** * ** ** ** * *** ** *** * * * ****** * * * ******** * * i*i + j*j == k*k ){
* ** ** *** ** * *** * ** * ** *** * * * ***** * ***** * * * * *** * ** ** ** ** ***** *** * * *** * * %d %d\n",i,j,k);
** * * * * * * *** * * * * *** * * ** ** ** * * * ** * ** ****** *** *** *
** * * * ** ** * ***



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* ** * * *** *
** **** * *** ***
** ** ** *****
* * ***
**
* * * ****** **
** * * * * * ** * ** * * *

* * * *
*
* *
* ***
* * * *
* *
*

*** * * ** * * * * i * * = i * = i * * * * ** ** * * * * * * *
**
* * * * * *** * * * * ** * * * *** * * * * * ** *** * * *

* * * *** * * * * * = * * ** * ** * **** * *** * * **
* *
** * * * * * * * = i * ** * * ** ****
=
** = ** * * * * * * * * * * * * * * * ** * ** * * * * *
*
* * ** * * * * * * * * * * **** * * * ** *
* *
* * * *** **** * * * *** * * * ** *** * * *** ** *


*
*

*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * * ***** ** **
* * ** * * ****
* * * ** * * **** * **
** * ** *

*** **** *** ** *
***** * * * * ** * *** ***

** * **
** **
* * * ***
* * **
* * *
* *
* *

** * * ** * * i * * = i * * = i * **** * **** * * * ***
*
**** * *** * * *** * *** * ** * * * ** * *** ** * **
* *
** * *** ** * ** = * *** ** ** ** * ** **

***** * ** * ** * * * * = i * ** ***** ** ***** *
=
**** = ** * *** * * * * * * * * ***** *
* *
* * * * * * * ** *** * ** * *************

* * * * * ** * * * * ** ** * * * **** ** ***






*
answered by (-276 points)
0 like 0 dislike
Hidden content!
** * * ** *** * *


*******

{
* * ** ** * * *** a, b, c, n;
*** * ***** ***** *** ***** ***** ***** * * ****
*** * * *** *** *** *** * * * **


* * *** ** *** * * * * = 1; c * * n; c++)
* *** *** ** * * = 1; a ** c; a++)
* * * * *** ** * = a +1; b * c; b++)


**** ** * *** * (a * a + b * b == c * c)
* * ** * *** ** ** ** * * * * * %d * **** *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:44.192.22.242
©2016-2021

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 339 views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 227 views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 249 views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 928 views
11,983 questions
155,005 answers
156,371 comments
4,246 users