0 like 0 dislike
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 117 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* * **** * * * *** ** **** * **** ***

    for(i=3; i<x ;i++){
* * ** * * ** * *** * **** * * * * * j<x-i ;j++){
* * * * *** * ** ** * * ***** * * ** *** ** * * * ****** * ** * *** k<x-i-j ;k++){
*** ** * ** ******** ** ** * ** *** * *** * ** *** ** * * * ******* ********* **** ** * * * i*i + j*j == k*k ){
** * * * ** * ** **** **** ** * * **** * * * ** ** * * * * **** * * ** * ** *** ** * * * **** *** **
* ** ** ****** * * * **** * ** ** **** *** ** ** * *** * ** * * * * * ** * * ** ** ** * ********* * ********* ******* * * * * ********* **** * *


*** ** * * ***** *** * *** ** ** * **** ******* ** * * ** * ** * * * ****** *** * * * * * ** ** * * ** *** * * *** * ******* * * %d %d",i,j,k);
* *** **** ** ** **** ***** * * * **** ** ******** ***** * *** *** * ** * ****** * * * ** ** *****


** * * * * * * **** ** * *** ** * ***** * * * * * *** **** *** * * **** *** * *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
** **** * *** ** **** x,i,j,k;
* * * * * * * * * * ***** *** **
* ****** ** ** ** *** * i<x ;i++){
******* ** ** * ** * **** ** *** * * *** ** j<x-i ;j++){
* ** **** ** * ****** * **** * ** * *** * ** * ***** * * *** * k<x-i-j ;k++){
**** * **** * * *** ** ** * * ** * * ** ******** ** ** * *** *** * ** * *** * ** ** ** ** ** i*i + j*j == k*k ){
*** ** * ** *** * ***** *** ** * ****** * * **** ** **** ** * ** ** ***** * ** ** ** * * * * * ** * ** ** ** ** * * * %d %d\n",i,j,k);
* ** *** *** ********** * ******* * * ** *** **** * ** * * * * * * * **** **** * ** ***
* ** * ** * ** *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* *** * * * *
* * * *** ***
** * ***** * **
** *** **

* ** ****** *
* ** ***** **** * *
*
* * *
* * **
** * **
** *
*
* * *
* *

**** * * *** ** * i * * = i * * * = i * * ** * * ** ***
** *
* * * * * ** * ** ** **** ** ** ** *** *

** * * ** ** * * * * = * **** * * * ** *
*
* *** * * * * * * * ** * ** = i * * ******** **** * * **** * ** * * *
=
** = ** ** * * ** * **** * *** * ******* *** ***
*
**** * * *** * * * * * * * **** * * * ****
* **
** * ** *** ** ** * * * * * ** * *** * * * *** * ** ***
*

*


**
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * ** * *** * *
* * ** **** ****** *
** * * * ** * *
* ** *

* ** * **** ***
** ** * ** * ** * ** **

* * *
**
* **
*
* *
** * **
* *
*
* * * * * i * ** = i * * = i * * ** ** **** *** ** * * *

* * ** * *** * *** * * * ** * *** ******
* *
** * * * * * * * * * * * * = * * ** * **** **
* *
** * * * ** * * ** * * * * * * * * * = i * **** * * **** * * * *** ****
= *
* * = * ** ** * * * ** * * **** *** * * * ** ** ***
* *
** ** * * ** * * * * * *** ** **** ** ** * * * ** ** ** *
* * *
* * ***** * * * * * * * * * * * * * * **** *** *
*
*


*
* **
**
answered by (-276 points)
0 like 0 dislike
Hidden content!
** * ** * ** *


* * *

{
* * ******** *** a, b, c, n;
* *** ** * **** *** * * * * * *** * **
**** ** * * * *** * **** **** * *******


* ** * * * * * = 1; c * ** n; c++)
*** ** *** *** * = 1; a ** * c; a++)
** **** * *** = a +1; b * c; b++)


* *** **** * * (a * a + b * b == c * c)
** * ** ** *** * * * *** %d ** * ** * *



}
answered by (-74 points)
Get it on Google Play Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.63.63
©2016-2021

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 233 views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 181 views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 204 views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 663 views
11,166 questions
132,626 answers
131,307 comments
3,823 users