0 like 0 dislike
229 views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 229 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* * * * * ** * *** * ** * * ********

    for(i=3; i<x ;i++){
*** ** * *** * * *** * * ****** ** *** * * ** ***** j<x-i ;j++){
** * * * * * *** * *** **** ** * * ** *** *** ****** * * ** ****** * * ******** k<x-i-j ;k++){
* ** ** * * * **** ** * **** * *** * * *** ****** ** ** * ** ** * ** *** ** * * i*i + j*j == k*k ){
* * * * *** ** ** * * * * * ** *** * * * * * * ** ** * *** * * * ** *** **** ** * *** ** * *** ** ** *** **
**** *** ** * * * * ** ** * *** *** * **** ** ** ** * * ** * ** * ** *** ** * * * * ******** * **** * ** * ***** * * ** *** * *


* * ***** * *** **** * ** ** *** * ** * * * ** **** * ** *** * *** *** ** *** ***** * * * * ** ** ** * * ** ***** ** %d %d",i,j,k);
** * ** ** *** * ** ** ** * *** ** * * **** ** ** *** ** ** * * * * * ** *** *** * ** * * * * **


* * * * *** * * *** * * ***** * ** ** ** * * ***** ** * ***** * * ******** ***** * ** * * **



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
** * * * ** ** x,i,j,k;
**** ** * * * ** **** * * * * *
** * ** * ** * * * ** ** *** * i<x ;i++){
** ** *** *** *** * *** * * ** ** ** *** * * * j<x-i ;j++){
* ** * *** * ***** ** * * * * * * * ** * **** * ******* * * k<x-i-j ;k++){
** * *** * **** * * * * ** * *** ** *** *** ** * * * *** * ** **** ******** * * * ** * * i*i + j*j == k*k ){
* *** *** *** * * ** ** ****** * * * ******* *** ** ***** ******* * * * **** * **** * *** **** * * * ** ** *** * * **** ** * %d %d\n",i,j,k);
* * * ***** * ** ******** ** * * * * * ** *** * *** * * * ** * * * * * * * ******
* ** * *** *** * *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
** ** ***** * * *
* * ** *
* * * **
** *

* * ***** * *
*** ***** *** ** ** **** **

* * * *
** * *
* *
* *
* * * **
* *
* *

***** * ** ** * * * i * = i * * = i * * * *** * **** * *
**
*** * ** * ** * * * * ** * * *** ** * * * * ***
*
** * * ** *** * * * * * * = * * ** *** * ** *

* * ** * * *** * * * * = i * * ** * ** ** * * * * *
* = **
** = ** ** * * * * ** * ** ** *** ** * * * ***
**
* * * * * * *** * * * * ** * ** * ** *** **
*
* * ** * * * * ** * * ***** *** * * * ****
*


*

** * *
answered by (-276 points)
0 like 0 dislike
Hidden content!
******* * ***
* * ** ****
*** *** * ** **** * ***
* * * *

* * * **** **
*** * * * * * * *
*
*
* * **
**
** * * * *
* *
* *
* * *

**** * * ** * * * i * * = i * * = i * * *** * ** * ******
**
** *** ** * * * * * ** * * *** ***** ** *** *** *
* *
** * * **** * * ** = * * ** ** ** ** *** ** ** * **
**
* * ** * *** * ** * * ** = i * ** *** ** ****** ** * *
** =
* = * * * * * * * *** * ** ** ** * * * * * ***
*
** * * * * * *** * ***** ** * **** * * **
** *
* * ** * * * ** * * * * * *** * * * * * * ** ***** ** * * **** * *
*

*


* **
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** ** **** *


* *

{
* * ** ** ** * * a, b, c, n;
**** * ** ** * ** *** * * ** ** ****** * * *
****** * * * ***** *** * * * * *


* * * ** * *** ** = 1; c ** * * n; c++)
***** *** * * * ** * * ** = 1; a ** * c; a++)
** ***** * * = a +1; b * * * c; b++)


*** * ** ** ** * (a * a + b * b == c * c)
** ** * * ** *** * ** ** %d ** * * * *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.130.212
©2016-2024

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 619 views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 398 views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 403 views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2k views
12,783 questions
183,443 answers
172,219 comments
4,824 users